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Foreword

C
limate change represents an unprecedented challenge to the world’s bio-
sphere and to the global community. It is a threat beyond compare to the 
planet’s biodiversity, to human health and to the world’s economy. It also 

represents a unique challenge for plant health. Climate change will affect ecosys-
tems and agricultural production systems throughout the world. It will influence in-
ternational trade flows of agricultural products and it will change the infectivity, se-
verity and distribution of pests throughout the world. Climate change will, in 
particular, present an extraordinary trial to the international plant health community 
and its ability to react in a scientific, decisive and unified manner to these challenges.

The International Year of Plant Health (IYPH) 2020 has been an effort to raise public 
and political awareness of plant health, and to help governments and the interna-
tional community address plant health challenges. One important challenge to plant 
health that must be addressed is the impact of climate change. To this end, the IYPH 
International Steering Committee commissioned a scientific review of the topic. To 
strengthen the review’s scientific foundation, the Steering Committee convened a 
panel of reputable scientists from around the world to write the review, and estab-
lished a rigorous peer review system to validate its findings. This report details the 
outcome of the review and has been prepared by lead author Professor Maria Lo-
dovica Gullino (University of Turin, Italy) and a group of ten co-authors representing 
all FAO regions and with expertise in plant pathology, entomology, herbology, clima-
tology and data analytics. The scientific review was prepared under the auspices of 
the Secretariat of the International Plant Protection Convention (IPPC).

With this scientific review of the impact of climate change on pests and consequently 
plant health, the IYPH International Steering Committee hopes to provide the sci-
entific background necessary to inform successful discussions on the assessment 
and management of climate change impacts in international phytosanitary fora. It 
is the hope of the IYPH International Steering Committee that the review will be an 
impetus for the Commission on Phytosanitary Measures of the IPPC to discuss and 
develop international policies to mitigate climate change impacts on plant health. 
This scientific review is considered a first step in implementing the IPPC Strategic 
Framework 2020–2030 Development Agenda item “Assessment and management of 
climate change impacts on plant health”. It is our sincere hope and expectation that 
the review will elicit a decisive and unified response by the international community 
to the challenges posed to plant health by climate change.

Yours sincerely,

Ralf Lopian 
Chairperson of the International Steering Committee for the IYPH 2020
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Executive summary

C
limate change continues to present challenges to life and livelihoods 
globally and amplifies the problems humankind is already facing. The fo-
cus of this report is to outline the potential effects of climate change on 

plant pests, and hence on plant health, based on an analysis of scientific literature 
and studies that have investigated such aspects. A plant pest, hereafter referred to as 
a “pest”, is any species, strain or biotype of plant, animal or pathogenic agent injuri-
ous to plants or plant products. Historic and current examples clearly show the ex-
tensive damage that can be caused by pest outbreaks. Warming facilitates the intro-
duction of unwanted organisms; a single, unusually warm winter may be sufficient to 
assist the establishment of invasive pests, which otherwise would not be able to es-
tablish. In fact, the increased market globalization of recent years, coupled with in-
creased temperatures, has led to a situation that is extremely favourable to pest 
movement and establishment, with concomitant increases in the risk of severe forest 
and crop impacts. 

Studies have evaluated the effects of several atmospheric and climatic factors, in-
cluding increased temperature, carbon dioxide and ozone and changing water or 
humidity patterns, on the distribution, occurrence and abundance of pests and the 
severity of the pest risk they pose. Most of the research has focused on managed 
systems (e.g. agricultural and horticultural crops, forest trees), whereas unmanaged 
systems have been more or less neglected. Many different research approaches have 
been used, ranging from conducting laboratory and field experiments to performing 
simulation studies of future pest risk. 

Most studies, carried out with cereal and horticultural crops, indicate that, in general, 
pest risk from insects, pathogens and weeds will increase in agricultural ecosystems 
under climate-change scenarios, especially in today’s cooler Arctic, boreal, temper-
ate and subtropical regions. This is also mostly true for pathogens and insect pests in 
forestry. For unmanaged systems, there are only a few research results available and 
hence no general conclusions can be drawn. 

Preventive, mitigation and adaptation measures to limit the international spread of 
pests through trade and travel is necessary. These range from measures such as use 
of healthy seed and planting material to the adoption of recent technological devel-
opments such as innovative methods of pesticide delivery. Short-and mid-term mit-
igation and adaptation options include measures such as use of resistant varieties 
and the alteration of microclimate.

Despite the wealth of studies on climate-change biology, there are still prominent 
gaps in research into the impact of climate change on pests and on hence on plant 
health. These gaps include the effect of climate change on the effectiveness of man-
agement strategies, on below-ground pests, and on forestry and unmanaged sys-
tems. A long-term, multidisciplinary approach is needed that addresses the issues 
of developing as well as industrialized countries. International cooperation needs to 
be enhanced and investment should also be directed to capacity building, to ensure 
strong systems for pest risk analysis, surveillance and monitoring.



x

To conclude, the evidence reviewed in this report strongly indicates that in many 
cases climate change will result in increasing problems related to plant health 
in managed (e.g. agriculture, horticulture, forestry), semi-managed (e.g. national 
parks) and presumably also unmanaged ecosystems. Adjustments in plant-protec-
tion protocols are already necessary because of recent climatic changes, but further 
adjustments will become increasingly crucial in the future, assuming the projected 
climate-change scenarios come true. Maintaining managed and unmanaged eco-
system services and produce, including food, under climate-change conditions is of 
paramount importance. Preventive and curative plant protection is one of the key 
components needed to maintain and preserve current and future food security.

Desert Locust control operations in 
the Horn of Africa
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Effects of climate change on agriculture, 
forestry and ecosystems

1	 The goal of the Paris Agreement (2015) is to limit global warming to well below 2 °C, preferably to 
1.5 °C, compared to pre-industrial levels.

The focus of this review is to assess the potential effects of climate change on plant 
pests and hence on plant health. A plant pest, hereafter referred to as a “pest”, is any 
species, strain or biotype of plant, animal or pathogenic agent injurious to plants or 
plant products, as per the definition in the International Standard for Phytosanitary 
Measures No. 5 (ISPM 5) adopted by the Commission on Phytosanitary Measures of 
the International Plant Protection Convention (IPPC). 

Climate change is defined as an increase in combined surface-air and sea-surface 
temperatures, averaged over the globe, over a 30-year period. Warming is expressed 
relative to the period 1850–1900, which is used as an approximation of pre-industri-
al temperatures. Warming from pre-industrial levels compared to the decade 2006–
2015 has been assessed to be 0.87 °C. Since 2000, the estimated level of human-in-
duced warming has been equal to the level of observed warming, with a likely range 
of ±20 percent accounting for uncertainty due to contributions from solar and vol-
canic activity over the historical period (IPCC, 2018). Climate models project robust 
differences in regional climate characteristics between the present day and global 
warming of 1.5 °C and between 1.5 and 2.0 °C. Such differences include increases in 
mean temperature in most land and ocean regions, hot extremes in most inhabited 
areas, heavy precipitation in several regions, and the probability of drought and pre-
cipitation deficits in some regions (IPCC, 2018). 

Climate change continues to present challenges to life and livelihoods globally (Al-
tizer et al., 2013; IPCC, 2018). Changes observed include increased global land and 
ocean temperatures (Figure 1), loss of ice sheets and snow cover, rising sea levels, 
increased ocean acidification, more frequent warm extremes, more variable rain-
fall patterns and more frequent heavy-precipitation events and droughts (Figure 2). 
These changes have been attributed to increased emissions of anthropogenic 
greenhouse gases since the pre-industrial era, due to intensification of agricultural 
and industrial activities, combustion of fossil fuels, and changes in land use (Fig-
ures 3 and 4). Chemical analysis of ice and sediments indicates that atmospheric 
concentrations of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) have 
been at unprecedented levels for at least the last 800 000 years. 

Their effects, together with those of other anthropogenic drivers such as deforest-
ation, are the dominant cause of the observed warming since the mid-twentieth 
century (IPCC, 2014a, 2014b, 2018; Wuebbles and Hayhoe, 2002). Importantly, glob-
al climate change, especially global warming, is likely to continue. According to 
the Intergovernmental Panel on Climate Change (IPCC) Special Report on Global 
Warming of 1.5 °C, global warming is likely to reach a 1.5 °C increase between 2030 
and 2052 compared to pre-industrial levels if the warming continues to increase at 
the current pace (IPCC, 2018).1 
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Introduction
Climate-related risks are higher for global warming of 1.5 °C compared to the current 
risks,2 but the risks are significantly more severe if the global warming reaches 2 °C. 
Risks depend on the degree and pace of warming, geographical location, levels of 
regional and local development and vulnerability, and realized adaptation and miti-
gation activities (IPCC, 2018).

Climate-change impacts are already emerging for natural and human systems, in-
cluding changes in water quantity and quality, and shifts in geographical ranges, sea-
sonal activities, migration patterns, species abundance and interactions for many 
terrestrial, freshwater and marine species (IPCC, 2014a, 2019a, 2019b), with more 
negative than positive impacts on the yields of most crops (Porter et al., 2019). There 
is evidence that climate change is affecting biological systems at multiple scales, 
from genes to ecosystems (Garrett et al., 2006; Sutherst et al., 2011). According to 
Scheffers et al. (2016), anthropogenic climate change has impaired 82 percent of  
94 core ecological processes recognized by biologists, from genetic diversity to eco-
system function. 

Furthermore, already existing risks such as reduced freshwater availability will be 
amplified, and new ones will arise during and beyond the twenty-first century. Future 
impacts will include increased extinction risk. For example, most plant species can-
not naturally change their geographical range quickly enough to keep pace with the 
rate of climate change, and marine organisms will be exposed to lower oxygen levels 
and greater acidification, to which they might not be able to adapt. Further climate 
change may also threaten food security through impacts on food crops and plant-
based animal feed. For wheat, rice and maize, the worst impacts are expected in the 
tropics and subtropics, with climate change projected to negatively impact produc-
tion where local temperature increases by 2 °C or more above late twentieth-century 
levels, although some individual locations may benefit from this change, especially 
at higher latitudes and altitudes. Global food and fibre production, plant protection 
and plant biosecurity, which include all strategies to assess and manage the risks 
posed by infectious diseases, quarantine regulated pests, invasive alien species and 
living modified organisms in natural and managed ecosystems, will also be adversely 
impacted (Gregory et al., 2009; Stack, Fletcher and Gullino, 2013). 

The aim of this report is to provide information on (i) what has happened in the last 
decades; (ii) what is expected to happen in the coming decades as a result of climate 
change; and (iii) what we can do in order to mitigate the impacts of, and adapt to, 
changing climates locally, regionally and globally. 

It is beyond the scope of this report either to address the causes of climate change 
or to provide a comprehensive summary of all results published during the past  
30 years. Instead, many examples of publications are cited for further, in-depth reading.

2	 According to the IPCC Special Report on Global Warming of 1.5 °C (IPCC, 2018), human activities have 
already caused approximately 1.0 °C of global warming above pre-industrial levels.
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The original, full legend for Figure 1 as published in IPCC (2013) is as follows:

Figure SPM.8 | Maps of CMIP5 multi-model mean results for the scenarios RCP2.6 and RCP8.5 
in 2081–2100 of (a) annual mean surface temperature change, (b) average percent change 
in annual mean precipitation, (c) Northern Hemisphere September sea ice extent, and  
(d) change in ocean surface pH. Changes in panels (a), (b) and (d) are shown relative to 
1986–2005. The number of CMIP5 models used to calculate the multi-model mean is indi-
cated in the upper right corner of each panel. For panels (a) and (b), hatching indicates re-
gions where the multi-model mean is small compared to natural internal variability (i.e., less 
than one standard deviation of natural internal variability in 20-year means). Stippling indi-
cates regions where the multi-model mean is large compared to natural internal variability  
(i.e., greater than two standard deviations of natural internal variability in 20-year means) 
and where at least 90% of models agree on the sign of change (see Box 12.1). In panel (c), the 
lines are the modelled means for 1986−2005; the filled areas are for the end of the century. 
The CMIP5 multi-model mean is given in white colour, the projected mean sea ice extent of 
a subset of models (number of models given in brackets) that most closely reproduce the 
climatological mean state and 1979 to 2012 trend of the Arctic sea ice extent is given in light 
blue colour. For further technical details see the Technical Summary Supplementary Materi-
al. {Figures 6.28, 12.11, 12.22, and 12.29; Figures TS.15, TS.16, TS.17, and TS.20}

Figure 1

Source: IPCC (2013). 
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For more information, please consult the 
original source (IPCC, 2013). Reproduced 
with the kind permission of the Intergov-
ernmental Panel on Climate Change.
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Figure 2

Source: IPCC (2013) .

The original full legend for Figure 2 as published in IPCC (2013) is 
as follows:

Figure SPM.2 | Maps of observed precipitation change from 1901 to 
2010 and from 1951 to 2010 (trends in annual accumulation calcu-
lated using the same criteria as in Figure SPM.1) from one data set.  
For further technical details see the Technical Summary Supplemen-
tary Material. {TS TFE.1, Figure 2; Figure 2.29}

For more information, please consult the 
original source (IPCC, 2013). Reproduced 
with the kind permission of the Intergov-
ernmental Panel on Climate Change.
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Figure 3

Source: IPCC (2013). 

The original full legend for Figure 3 as published in IPCC (2013) is as follows:

Figure SPM.10 | Global mean surface temperature increase as a function of cumulative to-
tal global CO2 emissions from various lines of evidence. Multimodel results from a hierarchy 
of climate-carbon cycle models for each RCP until 2100 are shown with coloured lines and 
decadal means (dots). Some decadal means are labeled for clarity (e.g., 2050 indicating the 
decade 2040−2049). Model results over the historical period (1860 to 2010) are indicated in 
black. The coloured plume illustrates the multi-model spread over the four RCP scenarios 
and fades with the decreasing number of available models in RCP8.5. The multi-model mean 
and range simulated by CMIP5 models, forced by a CO2 increase of 1% per year (1% yr–1 CO2 
simulations), is given by the thin black line and grey area. For a specific amount of cumulative 
CO2 emissions, the 1% per year CO2 simulations exhibit lower warming than those driven by 
RCPs, which include additional non-CO2 forcings. Temperature values are given relative to 
the 1861−1880 base period, emissions relative to 1870. Decadal averages are connected by 
straight lines. For further technical details see the Technical Summary Supplementary Mate-
rial. {Figure 12.45; TS TFE.8, Figure 1}

0

1

2

3

4

5
1000 2000 3000 4000 5000 6000 7000 8000

Cumulative total anthropogenic CO2 emissions from 1870 (GtCO2)
Te

m
pe

ra
tu

re
 a

no
m

al
y 

re
la

tiv
e 

to
 1

86
1–

18
80

 (°
C

)

0 500 1000 1500 2000
Cumulative total anthropogenic CO2 emissions from 1870 (GtC)

2500

2050

2100

2100

2030

2050

2100

21002050

2030

2010

2000

1980

1890

1950

2050

RCP2.6 Historical
RCP4.5
RCP6.0
RCP8.5

RCP range
1% yr 

-1 CO2

1% yr 
-1 CO2 range

For more information, please consult the orig-
inal source (IPCC, 2013). Reproduced with the 
kind permission of the Intergovernmental Pan-
el on Climate Change.
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The original, full legend for Figure 4 as published in IPCC (2013) is as follows:

Figure SPM.5 | Radiative forcing estimates in 2011 relative to 1750 and aggregated uncer-
tainties for the main drivers of climate change. Values are global average radiative forcing 
(RF14), partitioned according to the emitted compounds or processes that result in a com-
bination of drivers. The best estimates of the net radiative forcing are shown as black di-
amonds with corresponding uncertainty intervals; the numerical values are provided on 
the right of the figure, together with the confidence level in the net forcing (VH – very high,  
H – high, M – medium, L – low, VL – very low). Albedo forcing due to black carbon on snow and 
ice is included in the black carbon aerosol bar. Small forcings due to contrails (0.05 W m–2, 
including contrail induced cirrus), and HFCs, PFCs and SF6 (total 0.03 W m–2) are not shown. 
Concentration-based RFs for gases can be obtained by summing the like-coloured bars.  
Volcanic forcing is not included as its episodic nature makes is difficult to compare to oth-
er forcing mechanisms. Total anthropogenic radiative forcing is provided for three different 
years relative to 1750. For further technical details, including uncertainty ranges associated 
with individual components and processes, see the Technical Summary Supplementary Ma-
terial. {8.5; Figures 8.14–8.18; Figures TS.6 and TS.7}

Figure 4

For more information, please consult the 
original source (IPCC, 2013). Reproduced 
with the kind permission of the Intergov-
ernmental Panel on Climate Change.

Source: IPCC (2013). 
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Since their domestication, around 10 000 years ago, crops have been threatened by 
a multitude of pests causing yield losses often leading to starvation and social un-
rest. On average, at a global scale, between 10 and 28 percent of crop production is 
lost to pests (Savary et al., 2019). Further post-harvest losses are observed, with the 
worst scenarios in developing countries. Moreover, besides losses, the presence of 
mycotoxins (toxins produced by fungi) in food and feed can severely threaten the 
health of humans and livestock (Magan, Medina and Aldred, 2011; Van Der Fels-
Klerx, Liu and Battilani, 2016). 

Historic and current examples clearly show the extensive damage that can be 
caused by pest outbreaks. 

Among insect pests, two classical examples show the economic and social damage 
resulting from invasive expansion. One is the invasion and destruction of European 
vineyards by the insect phylloxera (Daktulosphaira vitifoliae) during the second half 
of the nineteenth century, and the second is the Colorado potato beetle (Leptino-
tarsa decemlineata) in the twentieth century, which rapidly colonized potato plots. 
Both of these pests originated in the United States of America. More recently, several 
native insect species from North America, with no prior records of severe infesta-
tion, have emerged as devastating pests of forest resources because of changes in 
their population dynamics. These include the aspen leaf miner (Phyllocnistis pop-
uliella), the leafblotch miner (Micrurapteryx salicifoliella) and Janet’s looper (Nepytia 
janetae), which have decimated millions of hectares of aspen, willows, and spruce-
fir forests since the early 1990s (Bebber, Ramotowski and Gurr, 2013). Other native 
species that have become pests include the mountain and southern pine beetles 
(Dendroctonus ponderosae and Dendroctonus frontalis, respectively) and the spruce 
beetle (Dendroctonus rufipennis), which have recently expanded their distribution, 
infesting commercially important pine and spruce trees (Anderegg, Kane and Ande-
regg, 2013; Bebber, Ramotowski and Gurr, 2013). 

Classical examples of the damage caused by crop and forest diseases include the 
Irish potato famine caused by Phytophthora infestans in the 1840s, the devastat-
ing impact of coffee rust in Ceylon caused by Hemileia vastatrix in the 1860s, and 
the Great Bengal Famine in 1943 caused by Helminthosporium oryzae (Schumann, 
1991). Another major example not to be forgotten is the chestnut blight caused by 
Cryphonectria parasitica, which wiped out the American chestnut tree (Castanea 
dentata): by the 1950s, 80 percent of the chestnut trees had died (Schumann, 1991), 
severely affecting the landscape of an entire country. The threat persists. New and 
more virulent strains of the rust fungi Puccinia graminis (Saunders, Pretorius and 
Hovmøller, 2019) and Puccinia striiformis are currently spreading (Liu et al., 2017) 
and a new invasive lineage of Phytophthora infestans has rapidly displaced other 
late-blight genotypes (Cooke et al., 2012). The sudden wilt of olive trees caused by 
Xylella fastidiosa subsp. pauca, which has destroyed millions of olive trees in Apulia 
(Italy) and also threatens other European and Mediterranean countries, is an exam-
ple of how a pathogen can affect a crop as well as the landscape of a region (Schnei-
der et al., 2020; Sicard et al., 2018). In California and Oregon in the United States of 
America, as well as in other areas, Phytophthora ramorum, which causes sudden oak 
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death, represents a threat to forest ecosystems (Rizzo, Garbelotto and Hansen, 2005), 
while other species of Phytophthora, such as P. kernoviae and P. agathidicida, are af-
fecting the iconic and culturally important kauri in New Zealand (Scott and Williams, 
2014) and P. pinifolia is damaging pine forests in Chile (Duran et al., 2008). 

In addition to insects and plant pathogens, extensive damage to plants can also be 
caused by nematodes. According to Williamson and Gleason (2003), nematodes are 
among the most frequently occurring organisms on earth, affecting all ecosystems. 
Most of them are free-living and harmless to plants, for instance consuming micro-
organisms such as bacteria, but a small number of nematode species are obligate 
parasites of plants, and some of these plant-parasitic nematodes can pose a serious 
threat to managed and unmanaged ecosystems. In agriculture, the most econom-
ically important groups of nematodes are the sedentary endoparasites, including 
the genera Heterodera and Globodera (both cyst nematodes) and Meloidogyne (root-
knot nematodes). In forestry, pine wilt disease, caused by the pine wilt nematode 
(Bursaphelenchus xylophilus), is one of the most devastating invasive diseases affect-
ing pine trees (Pinus spp.), with significant impacts on natural ecosystems in Africa, 
North America, Asia, and Europe (CABI, 2021a). It is particularly devasting in eastern 
Asia, including China, Japan and the Republic of Korea (Ikegami and Jenkins, 2018). 

Finally, some plant species are themselves pests. Weeds are “unwanted plants” in 
agriculture, horticulture, forestry and unmanaged ecosystems (Juroszek and von 
Tiedemann, 2013a; Korres et al., 2016; Wan and Wang, 2019). Thus, a weed is a plant 
prevalent in the wrong place or at the wrong time. Weeds have a range of properties 
that may be of benefit. Some weed species may provide useful ecosystem services, 
such as providing food for pollinators like bees, providing habitat for many benefi-
cial organisms, and providing soil cover, thereby reducing soil erosion. They can also 
be primary colonizers following soil or ecosystem damage (e.g. fire, landslips), and 
in stabilizing riverbanks and sand dunes. In addition, some are traditional medici-
nal plants. However, weeds may cause contact dermatitis or incite allergies through 
their pollen, and they can be toxic to livestock (Ziska, Epstein and Schlesinger, 2009). 
They can also have a negative impact where they are not wanted. Many weeds have 
a wide environmental tolerance and a high level of phenotypic plasticity and evolu-
tionary potential (Clements and DiTommaso, 2011), providing them with a very high 
competitive ability compared to crop plants, which have been selected to be homog-
enous. Weeds can therefore cause great losses in both the quality and quantity of 
crops and other plants and habitats, because they are competing for below-ground 
(e.g. water, nutrients) and above-ground (e.g. light) resources (Karkanis et al., 2018; 
Naidu, 2015; Peters, Breitsameter and Gerowitt, 2014; Ramesh et al., 2017). For exam-
ple, the production of carrots (Daucus carota), even in a home garden, is impossible 
without weed control, due to the poor competitive ability of carrot seedlings.

Pathways used by pests 

Pest dispersal occurs through both natural and anthropogenic processes, strongly 
facilitated during the past decades by the globalization of markets for plants and 
plant products including food, planting material and wood. Global travel and the 
trade of agricultural products have moved crops, weeds, pathogens, and insect 
pests away from their native environments to new ones. Newly introduced crops 
may expand pest distribution, and the introduction of new pests into a completely  
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new ecosystem may cause extremely serious damage because pests and hosts 
may not have coevolved together. This coevolution has been especially recognized 
for plants and their pests (Woolhouse et al., 2002) and has created a stable balance 
between hosts and pests within their endemic ecosystems. As an example, pine 
wilt nematode (see case study below), which has coevolved with the host plant 
species in its native area, North America, does not cause serious damage there. 
Once introduced into Asia, however, it killed several millions of trees of various Pi-
nus species.

According to Anderson et al. (2004), half of all emerging diseases of plants are spread 
by global travel and trade, while natural spread, assisted by weather events, is the 
second most important factor. In addition, there are also likely to be interactions be-
tween pest establishment and climatic or weather conditions. For example, global 
warming may facilitate the establishment of some pests that would otherwise not 
be able to establish (e.g. during an unusually warm winter under temperate climatic 
conditions). In fact, the increased market globalization of recent years, coupled with 
increased temperatures, has led to a situation that is extremely favourable to pest 
movement and establishment, with concomitant increases in the risk of severe yield 
losses (Deutsch et al., 2018; Savary et al., 2019). When considering the potential im-
pact of climate change on plant health and hence on plant distribution, it is there-
fore important to understand not only which conditions allow pests to thrive, but 
also the pathways by which they move from one place to another. 

An understanding of the pathways is also needed when determining what measures 
should be taken to mitigate and adapt to the changes in pest risk brought about by 
climate change. Considerable national and international efforts have been made to 
reduce the risk of international movement of pests (Meurisse et al., 2019), including 
the publication and implementation of International Standards for Phytosanitary 
Measures (ISPMs), developed under the auspices of the Commission on Phytosan-
itary Measures and the Secretariat of the IPPC. These include guidance on how to 
conduct pest risk analysis (PRA) to determine the risk of introduction (entry and 
establishment) and spread of pests and to select which measures to apply to pre-
vent this occurring (ISPM 2, 2019; ISPM 11, 2019; ISPM 21, 2019). Such phytosanitary 
measures are generally applied with reference to pathway risks. As there is a require-
ment to periodically review the information supporting the PRA (ISPM 11, 2019), this 
presumably includes re-evaluation of the pathway risks, or at least those that are 
extremely dependent on changing climatic conditions such as the occurrence of ex-
treme weather events that can spread quarantine pests across great distances.

A summary of the main types of pathways is provided below.

Wood packaging 

Historically, wood, including packaging, has played a major role in spreading plant 
pests. Among the examples that show the significance of such a pathway is the 
movement of invasive insect species, such as the wood beetle Anoplophora gla-
bripennis (Coleoptera: Cerambycidae), in packaging during international trade 
(EPPO, 2020a, 2021a). This species is polyphagous (i.e. it feeds on a wide range of 
foods), feeding on several species of the trees maple (Acer), poplar and aspen (Pop-
ulus), willow (Salix) and elm (Ulmus) in forests and urban environments. Native to 
China and the Republic of Korea, it has been introduced into the United States of 
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America and Canada in infested wood packaging and it has also been detected in 
several European countries. Eradication programmes are underway in these coun-
tries, these involving the detection, removal and destruction of infested trees. Care-
ful inspection and treatment of solid wood packaging material, such as pallets and 
dunnage, is an international requirement to prevent new introductions. Modelling 
efforts to predict the geographical distribution of the beetle have shown that cli-
mate change may alter its distribution and impact (Hu et al., 2009). 

Wood packaging has also been indicated as the likely pathway of many bark beetle 
species, such as Ips grandicollis (Coleoptera: Curculionidae), as well as other seri-
ous forest pests such as the emerald ash borer, Agrilus planipennis (Coleoptera: Bu-
prestidae), and the Sirex woodwasp, Sirex noctilio (Hymenoptera: Siricidae) (Meurisse 
et al., 2019). Movement of the pine wilt nematode, B. xylophilus (see case study), or its 
insect vector, through untreated wood packaging material has also been observed 
(Sousa et al., 2011).

Seeds, planting material, soil and growing media

Globalization of seed and planting-material markets is one of the main causes of 
the recent and rapid spread of plant pathogens to new hosts. Moreover, some of 
the newly introduced pathogens and insect pests that are typical of warm areas are 
spreading easily in temperate regions, because of increases in temperature. In gen-
eral, seeds are vectors of pests. Mature plants are also great vectors of live insects 
including mites, aphids, caterpillars, leaf miners and thrips. For this reason, Australia, 
for instance, has completed a PRA on cut flowers that lists the main insects associ-
ated with them. 

Particularly in the vegetable sector, the recent spread of new pathogens in differ-
ent countries is clearly linked to the fact that, being seed-borne, their diffusion is 
favoured by market globalization; the effect of global warming on plants and their 
hosts has also contributed to this spread. This has been shown to be the case, for 
instance, with Alternaria spp., Fusarium equiseti and Myrothecium spp., which have 
recently been observed on lettuce, wild and cultivated rocket, lamb’s lettuce, basil 
and spinach (Gilardi, Garibaldi and Gullino, 2018). Tomato viruses (Tomato brown 
rugose fruit virus) and viroids (Potato spindle tuber viroid) are classic, recent and top-
ical examples. Tomato brown rugose fruit virus has emerged in the last few years 
and has spread easily by seed movement. Many of the pathogens that cause severe 
losses in leafy vegetables, such as those mentioned above, can be seed-transmitted 
and hence go unnoticed. Thus, even low levels of seed infection can lead to the rap-
id emergence of new diseases in distant geographical areas (Gitaitis and Walcott, 
2007; Gullino, Gilardi and Garibaldi, 2014a, 2019; Munkvold, 2009). Unfortunately, 
this happens very frequently, as shown by many recent introductions, despite the 
presence of industry and international standards defined in order to reduce this risk. 

The ornamental industry, due to its international nature, is greatly affected by the 
introduction of pests through infected material (Daughtrey and Buitenhuis, 2020). 
Ornamental plants, whether started from seed, from cuttings or from cane section, 
can easily harbour pests. Only plants micropropagated through tissue culture (gen-
erally foliage plants) have a considerably reduced risk of infection by pathogens, 
provided that they are kept clean, consequently avoiding reinfection (Chen and 
Henny, 2006). Several of the most damaging insect and mite pests of greenhouse 
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crops have originated through the importation of infested plant material and have 
established quickly because of the special environmental conditions of greenhous-
es (Albajes et al., 1999; Wang et al., 2015). Ornamental coffee plants imported from 
Costa Rica and infected by Xylella fastidiosa subsp. pauca are considered the possi-
ble vector of this destructive pathogen in Europe (Bergsma-Viami et al., 2015).

Soil and potting media, often imported, can harbour soil-borne pathogens 
(e.g. Fusarium spp., nematodes), the larvae of insect pests and weed seeds. This 
has been well documented in relation to peat and other media used in the orna-
mental industry and in nurseries. Contamination of growing substrates by soil-
borne pathogens (e.g.  Fusarium oxysporum, Pythium spp., Rhizoctonia solani) re-
sults in incomplete disinfestation and in early attacks of young plants (Garibaldi 
and Gullino, 1995).

In addition to the pest risk posed by the movement of seed, planting material, soil 
and growing media described above, a new type of threat has emerged in recent 
years, with the increasing online market that spreads planting material around the 
world. The planting material marketed as such is often of low quality and generally 
not subject to phytosanitary control, and hence it represents a new type of threat. 
This aspect, not yet considered at the moment, should be taken into account in 
the future. 

Conveyances, cargo and movement of animals

Tractors, cars, trucks, trains, ships, aeroplanes, containers, re-sold used agricultur-
al equipment, and other vehicles are common means for passively moving pests. 
Indeed, plant pathologists, entomologists and weed scientists often consider the 
speed of spread of pests as directly related to the speed of conveyances. 

Living organisms can also spread pests such as weed seeds located on animal skin 
or fur. For example, movement of animal herds by pastoral communities into new 
territories in search of pasture has spread seeds of the invasive alien plant Partheni-
um hysterophorus in eastern and southern Africa (McConnachie et al., 2011). 

The global shipping network is widely recognized as a pathway for vectoring inva-
sive species. One insect species that is known to have spread throughout the world 
by shipping, including transportation by ships and shipping containers, is the gypsy 
moth, Lymantria dispar. This species may be introduced into a new area when the 
port has a suitable climate for the survival and establishment of the species. Two 
subspecies, with different geographical origins, are known today, and the global 
distribution threat from the Asian subspecies has been estimated using a CLIMEX 
model (Paini et al., 2018).

The brown marmorated stink bug heteropteran Halyomorpha halys (Hemiptera: 
Pentatomidae) is another example of an invasive insect travelling mainly through 
international trade as a contaminant of non-regulated goods such as machinery, 
containers and vehicles, but also by passengers and to a lesser extent through 
movement of plant material. It is highly polyphagous, feeding on more than  
300 plant-host species, including food crops, forest trees and ornamentals. This 
pest has caused serious economic losses in hazelnut crops in Georgia and fruit 
crops in Italy since its introduction – most likely from North America. A detailed 
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report of a pest risk assessment for the introduction and establishment of H. halys 
can be found in Burne (2019).

Passengers

People, with their leisure or business travel, are perfect vectors of pests, particularly 
in the absence of strict controls at points of entry. Leisure travel, in particular, is often 
associated with people bringing back food, seeds or exotic plants, and these can 
be infested with pests or can themselves be a pest. To counter this, an increasing 
number of countries are establishing campaigns at points of entry (airports and har-
bours), aimed at increasing the public’s understanding of the threat to biosecurity 
posed by the movement of plants and plant parts. Many countries inspect baggage 
and mail for food and other biosecurity-risk material and encourage incoming pas-
sengers to declare potential biosecurity risks. They screen passengers and their bag-
gage using X-rays, detector dogs and manual inspections. Passengers with risk mate-
rials may be fined or even refused entry. In this respect, countries such as Australia, 
New Zealand and the United States of America (McCullough et al., 2006) have a long 
history of strict control, as well as of collecting and reporting data on interceptions. 

Natural dispersal 

There are examples where native and non-native pests have significantly expanded 
their geographical ranges naturally (i.e. not assisted by humans). These are usually in 
relation to major changes in host distribution or climate. Of the changes in climate, 
increasing temperatures have particularly facilitated range expansion in pests, espe-
cially at higher latitudes and altitudes. In Europe, for example, higher winter temper-
atures have increased the larval survival and nocturnal adult dispersal of the pine 
processionary moth, Thaumetopoea pityocampa, allowing the northern expansion 
of its range (Battisti et al., 2006). In addition, wind and storms can transport spores of 
pathogens over long distances, even across continents. For example, changing wind 
or storm patterns are projected to promote the future distribution of wheat stem rust, 
caused by Puccinia graminis (Prank et al., 2019). Also, myrtle rust (Austropuccinia psi-
dii), detected for the first time in Australia in 2010 on the central coast of New South 
Wales, is expanding its distribution and can now be found in a range of native forest 
ecosystems, with disease impacts ranging from minor leaf spots to severe shoot and 
stem blight and tree dieback (Pegg et al., 2017). The distribution of several pests, in-
cluding fruit flies, can be affected through hurricanes in the Caribbean, Central Amer-
ica, and the southern United States of America. For example, Flitters (1963), when 
following the hurricane “Carla”, observed that several insect species emerged in un-
usually large numbers in Texas, suggesting that they had been transported there by 
the hurricane from distant locations.
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of climate change on plant pests 

Over the past 30 to 40 years, the effects of several factors – increased temperature, 
CO2, ozone or ultraviolet-B irradiation, and changing water or humidity patterns – on 
the incidence and severity of plant diseases have been evaluated. Studies have fo-
cused on pests affecting field crops such as wheat, barley, rice, soybean and potato 
(Bregaglio, Donatelli and Confalonieri, 2013; Evans et al., 2008; Launay et al., 2014; 
Luck et al., 2011; Mikkelsen, Jørgensen and Lyngkjær, 2014), horticultural crops (Gull-
ino et al., 2018; Koo, Hong and Yun, 2016), including tropical and plantation crops 
(Ghini, Hamada and Bettiol, 2011), and forest trees (Battisti, 2008; Jactel, Koricheva 
and Castagneyrol, 2019; Sturrock et al., 2011). 

A variety of research approaches have been used in such studies, as summarized in 
Table 1. Some have involved experiments, looking at the effects of changes in one 
or more weather parameters. Other studies have investigated species along latitudi-
nal or elevational gradients as a proxy for changes in climate over time. In addition 
to these empirical approaches, “theoretical” approaches have also been adopted, 
such as the meta-analysis of published results or the analysis of long-term data sets. 
Finally, some studies have drawn upon expert opinion or have generated simulation 
models to predict how projected changes in climate or atmospheric composition 
will alter the distribution, prevalence, severity and management of pests and other 
organisms.

Experimental approaches can yield useful insights into the effects of climate change 
on plant diseases and pests, but few such studies have realistically mimicked a 
changing climate (Chakraborty and Newton, 2011; Ingram, Gregory and Izac, 2008; 
Loustau et al., 2007; Luck et al., 2011; Pautasso et al., 2012). Climate-change studies 
carried out in free air CO2 enrichment facility (FACE) systems and in open-topped 
chambers have led to a better understanding of the effects of different param-
eters on the development of plant diseases in various crops (Eastburn, McElrone 
and Bilgin, 2011) (Figure 5). Such systems have also been used to investigate weeds 
(Williams et al., 2007) and insects (Delucia et al., 2012). In general, most of the insect 
and disease problems studied in FACE systems under elevated CO2 conditions have 
shown increases, as recently summarized by Ainsworth and Long (2021). 

Phytotrons – environmental chambers built to test the effect of combinations of 
environmental parameters (Gullino et al., 2011; Hakata et al., 2017) – enable stud-
ies of the effects of short-term increases in CO2 and temperature on host–pathogen 
relationships (Gullino et al., 2018), to understand how specific diseases may evolve 
in the future (Figure 6). The results of such studies can be used to develop practi-
cal solutions to cope with future scenarios, for instance providing support to the 
plant-breeding industry. They can also allow investigation into other, more indirect, 
effects of climate change on plants, such as the effects on mycotoxin production or 
on disease-management practices (Gilardi et al., 2017; Gullino et al., 2020).

Field approaches in natural environments include research along an elevation gra-
dient from low- to high-elevation sites (Betz, Srisuka and Puthz, 2020; Garibaldi, Kitz-
berger and Chaneton, 2011), with associated changes in temperature and air hu-
midity, and research in different habitats along a latitudinal gradient, including, for 
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example, subtropical, temperate and semi-arid climatic conditions (Bairstow et al., 
2010; Scalone et al., 2016). The first approach has the advantage of the photoperiod 
being the same along the elevational gradient. In the second approach, the photo-
period is likely to vary across the latitudinal gradient. In the tropics, for example, days 
are shorter and nights are longer during summer and the other way round in win-
ter, compared to temperate climatic conditions. These differences in photoperiod 
need to be considered when interpreting results. Nevertheless, this kind of approach 
is helpful for identifying broad patterns across wide environmental gradients and a 
range of climatic regions under real-world conditions, and such studies can help to 
determine whether a certain species is limited to a specific climate or is widely oc-
curring and may invade locations that are getting warmer (Juroszek and von Tiede-
mann, 2013a).

Meta-analyses of published data sets have been performed to search for general pat-
terns in the responses of specific pests to differences in climate variables (Koricheva 
and Larsson, 1998; Massad and Dyer, 2010; Vila et al., 2021). In addition, long-term 
data sets from field observations have been used to study climate-change effects 
that are already apparent owing to the warming in recent decades (Altermatt, 2010; 
Huang and Hao, 2020; Jeger and Pautasso, 2008). Such long-term data sets can serve 
as a suitable baseline for future studies (Huang and Hao, 2020; Robinet and Roques, 
2010) because they can help researchers distinguish impacts due to climate change 
from those due to other factors (Garrett et al., 2016, 2021). Attempts to improve es-
timates of climate–warming effects on insects have been made by combining da-
ta from long-term data sets, large-scale experiments and computer modelling (Dia-
mond, 2018; Grünig et al., 2020; Lehmann et al., 2020). For example, a meta-analysis 
of data from laboratory studies concluded that higher trophic levels (e.g. predators) 
are more susceptible to climate change than lower-order organisms (plants or her-
bivorous insects) (Fussmann et al., 2014). This is relevant when studying the changing 
role of natural enemies on insect pest dynamics and biological control under climate 
change – a subject on which there are very few field data (Thomson, MacFadyen and 
Hoffman, 2010). 

Simulation models can be used to project future climate-change impacts on pests 
(Sutherst, 1991; Sutherst et al., 2011), and to help determine tactics and strategies 
to control pests (Ghini, Hamada and Bettiol, 2008; Hill and Thomson, 2015; Salinari 
et al., 2007; Shaw and Osborne, 2011). One modelling approach, for example, uses 
“climate matching”, whereby a geographical area that has a present-day climate 
analogous to the future climate in the area of interest is studied (for pest dynamics in 
this case), and then the findings extrapolated to a future scenario in the area of inter-
est (Sutherst, Maywald and Russell, 2000). Other modelling approaches may rely on 
long-term data sets for weather parameters, crop development, and pest distribu-
tion and prevalence to develop and validate “pest–crop–climate” models (Angelotti 
et al., 2017; Madgwick et al., 2011). Other recent examples of modelling studies, listed 
in Table 2, consider parameters such as the number of generations per year for insect 
pests, the timing of plant flowering and related disease severity, and the global dis-
tribution of weeds. 
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Table 1. 	Examples of experimental and theoretical approaches in climate-change biology research

TYPE OF RESEARCH APPROACH DESCRIPTION AND COMMENTS SELECTED REFERENCES

Experiments under controlled 
conditions

Controlled conditions are not realistic, but it is easier to 
study one or few environmental parameters because of lower 
variability and fewer interactions. 

Gullino et al., 2018.

Experiments on-station, on-farm, 
and under natural conditions

Field conditions are realistic, but the environmental parameters 
are difficult to control because of variability and complex 
interactions.

Raderschall et al., 2021; Torresen et al., 
2020. 

Studies along an elevation gradient 
from low to high elevation sites 

Effects of changes in temperature and precipitation can be 
studied over a short distance, with day length the same  
(e.g. characteristics of a single species can be compared). 

Betz, Srisuka and Puthz, 2020. 

Studies along a latitudinal gradient 

Research along a climate gradient from temperate to tropical 
is possible, with long-distance changes in temperature and 
precipitation, but day length can be different in different 
locations (e.g. characteristics of a single species, or the 
biodiversity of species in general, can be compared in different 
climates).

Scalone et al., 2016.

Meta-analysis of published data

Involves searches for general patterns in responses of specific 
taxa to variations in climate factors. A sufficient number of 
published results should be available to draw meaningful 
conclusions.

Seidl et al., 2017.

Data monitoring, long-term data 
sets of different parameters

Involves long-term field observations to study effects already 
apparent due to climate warming in recent decades. Long-term 
weather records are necessary and, if available, other long-term 
data sets to search for other possible reasons for observed 
changes (particularly in managed systems).

Huang and Hao, 2020; Palmer et al., 2017.

Expert opinion
Long-term experiences and knowledge of experts can be used. 
The complete life cycle of a pest species can be considered in 
theory; but this approach is somewhat subjective.

Karkanis et al., 2018.

“Climate matching” approach

A present-day climate analogue to the future climate for an 
area of interest is found, and the pest dynamics in that location 
studied in order to gain an appreciation of the comparative 
dynamics (e.g. dynamic climate matching model CLIMEX). 
Other tools can also be used, such as MaxEnt, which compares 
the habitat suitability of different locations for the species of 
interest.

Biber-Freudenberger et al., 2016; Sutherst, 
Maywald and Russell, 2000. 

Modelling approach using one or 
several climate-change scenarios 
or models, or comprehensive 
ensembles of climate-change 
scenarios or models, to simulate 
future pest risk

It is possible to categorize scenarios or models used from 
“conservative” to “worst case”, and this is also possible within 
a single climate-change model if different representative 
concentration pathway (RCP) scenarios are applied (RCP 
2.6, RCP 4.5, RCP 6.0, RCP 8.5). However, using one specific 
climate-change scenario in only a single climate model is no 
longer deemed adequate, because it does not incorporate the 
variation that is possible. Therefore, comprehensive ensembles 
of climate-change scenarios or models are often used.

Angelotti et al., 2017;  Launay et al., 2020.

CLIMEX, climate modelling of extreme events; RCP, representative concentration pathway.
Note: The references were subjectively selected, with a preference for post-2000 studies. 
Source: Modified after Juroszek and von Tiedemann, 2013a.
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Figure 5A

Open top chambers for studying the impacts of  
increased air CO2 concentration in Petrolina, Brazil 

Figure 5B

©
 F. Angelotti

©
 F. Angelotti

Figure 6

Phytotrons used for vegetative growth under controlled conditions
By simulating multiple environmental factors, phytotrons allow the effects of climate 
change on plants and their pathogens to be studied.

©
 Agroinnova
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Table 2.	  Examples of pest risk simulation studies where pest models were linked to climate-change scenarios

COUNTRY OR REGION TIME SPAN OR SPANS CROPS AFFECTED, PEST SPECIES AND PROJECTION OF CHANGE SELECTED REFERENCE 
INSECTS

Switzerland

2070–2099

Multiple crops: Brown marmorated stinkbug (Halyomorpha halys), 
which has a wide range of potential hosts, is projected to expand 
into higher altitudes, produce more generations per year, and be 
active earlier in spring.

Stoeckli, Felber and Haye, 
2020.

Global 2050, 2100
Multiple crops: Area suitable for fall armyworm (Spodoptera 
frugiperda) is projected to increase. 

Zacarias, 2020.

Global

2050

Tomato: It is projected that several nations face a potential 
increase in two-spotted spider mite (Tetranychus urticae) 
outbreaks, while biological control by its key predator Phytoseiulus 
persimilis will not improve.

Litkas et al., 2019.

United States of 
America, Midwest 2001–2050, 2051–2100

Corn and soybean: Pressure of nine different insect pests is 
projected to increase in general. Insect pests will move northward, 
because “optimal climatic conditions” will be further north. 

Taylor et al., 2018.

Global 2041–2060,

2061–2080
Potato: Expansion of Colorado potato beetle (Leptinotarsa 
decemlineata) into northern regions is projected.

Wang et al., 2017.

Africa
2041–2060 

Multiple crops: Habitat suitability for Bactrocera dorsalis, Ceratitis 
cosyra and Tuta absoluta is projected to partially increase across 
the continent.

Biber-Freudenberger et al., 
2016.

Luxembourg
2021–2050, 2069–2098 Oilseed rape: Meligethes aeneus is projected to invade crops 

earlier in the year.
Junk, Jonas and Eickermann, 
2016.

Scandinavia and 
central parts of 
Europe 2011–2040, 2071–2100

Forest trees, spruce: Increased frequency and length of  
late-summer swarming events of the European spruce bark beetle 
(Ips typographus) is projected. A second generation in southern 
Scandinavia is possible and a third generation in the lowlands of 
central Europe. 

Jönsson et al., 2011.

PATHOGENS (DISEASES)

France 2020–2049,
2070–2099

Wheat: Risk of leaf rust (caused by Puccinia triticina) is projected 
to increase.

Launay et al., 2020.

France 2020–2049,
2070–2099

Apricot: Risk of blossom blight and twig blight (caused by 
Monilinia laxa) is projected to decrease or increase, depending on 
the cultivar grown (early vs late flowering).

Tresson et al., 2020.

Canada,
Quebec

2041–2070
Soybean: The number of generations of soybean cyst nematode 
(Heterodera glycines) is projected to increase. 

St-Marseille et al., 2019.

Global 2050,
2100

Soybean: Area favourable for soybean rust (caused by Phakopsora 
pachyrhizi) is projected to decrease.

Ramirez-Cabral, Kumar and 
Shabani, 2019.

Philippines 2050
Banana: Area favourable for Fusarium wilt (caused by Fusarium 
oxysporum) is projected to increase.

Salvacion et al., 2019.

China, central 2030s,
2050s,
2070s,
2080s

Kiwi: Area favourable for bacterial canker (caused by 
Pseudomonas syringae) is projected to increase.

Wang et al., 2018.

Europe 2070
Pine trees: Pine wilt disease risk (caused by the pine wilt 
nematode, Bursaphelenchus xylophilus) is projected to increase.

Ikegami and Jenkins, 2018.

Brazil 2011–2040,
2041–2070,
2071–2100

Grapevine: Area favourable for downy mildew (caused by 
Plasmopara viticola) is projected to decrease across Brazil, 
although there are differences across regions or states.

Angelotti et al., 2017.

Italy 2030
2050
2080

Grapevine: Increased importance of downy mildew (Plasmopara 
viticola), due to more spring days with favourable conditions, with 
earlier attacks and more treatments needed. 

Salinari et al., 2006.

India

2010–2039,
2040–2069

Rice: Infection ability of leaf blight (caused by Magnaporthe 
oryzae) is projected to increase during the winter season 
(December to March), whereas during the monsoon season  
(July to October) it is projected to remain unchanged or to 
decrease slightly.

Viswanath et al., 2017.

Germany,
south-west

2050, 2100
Sugar beet: Risk of Cercospora leaf spot (caused by Cercospora 
beticola) is projected to increase.

Kremer et al., 2016.
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WEEDS

Global 2050

For 32 invasive weed species, the area suitable for growth is 
projected, in general, to decrease on a global scale. However, 
in European countries, northern Brazil, eastern United States of 
America, and south-east Australia, the suitable area is projected to 
increase for most of these 32 weed species.

Shabani et al., 2020.

China 2070–2099
For six out of a total of eight alien invasive weed species, the area 
suitable for growth is projected to increase. 

Wan and Wang, 2019.

Global 2041–2060,
2061–2080

Suitable habitat of prickly nightshade (Solanum rostratum)  
is projected to expand into the circumpolar latitudes.

Wan and Wang, 2019.

Global
2050

Area suitable for lantana (Lantana camara) is projected to 
increase, although there will be considerable variation among 
continents.

Qin et al., 2016.

Global
2100

Area suitable for rigid ryegrass (Lolium rigidum) is projected to 
increase in North America, South America, Europe and Asia, while 
in Africa and Oceania it is projected to decrease.

Castellanos-Frías. et al., 2016.

United States of 
America, Colorado

2050 Area suitable for Bromus tectorum is projected to increase. West et al., 2015.

Europe
2010–2030, 2050–2070

Area suitable for common ragweed (Ambrosia artemisiifolia) is 
projected to expand northward and is projected to continue to be 
limited by drought stress in southern Europe.

Storkey et al., 2014.

Argentina, central
2020–2040

Performance of Johnson grass (Sorghum halepense) is projected 
to improve.

Leguizamon and Acciaresi, 
2014.

Note: The studies listed were subjectively selected, with a preference for recent publications. More summary tables with simulation results can be found 
in the literature: pathogens or diseases (e.g. Juroszek and von Tiedemann, 2015; Miedaner and Juroszek, 2021a), insect pests (e.g. Choudhary, Kumari and 
Fand, 2019), weeds (e.g. Clements, DiTommaso and Hyvönen, 2014).
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This section of the report explores the potential effects of climate change on 
pests and hence on plant health, first in terms of broad trends and then by 
reviewing the effects on a selection of individual species or groups of spe-

cies, provided as case studies. 

Simulation of future pest risk 

Simulation studies to determine future pest risks under climate-change scenarios 
have mostly employed species-distribution models, population-dynamics mod-
els, or hybrids of both (Table 2). Climatic factors considered in these studies include 
temperature, precipitation and humidity, but elevated CO2 is usually not considered 
(Eastburn, McElrone and Bilgin, 2011; Juroszek and von Tiedemann, 2015). The ef-
fects of climate change are probably easier to predict for those pest species that 
are mainly affected by temperature. Prediction is more difficult for pests whose re-
production and dispersal are strongly related to water availability, wind and crop 
management. This is also true for pests that are strongly affected by interactions 
with other organisms such as vectors of pathogens (Trebicki and Finlay, 2019), un-
less their interactions are well studied (Juroszek and von Tiedemann, 2013a) and 
thus predictable (see case study for Xylella fastidiosa).

The outcome of simulations is dependent on the materials and methods used, in-
cluding the global climate model used, the emission scenarios, the regional climate 
model, and the specific pest model, together with the precise parameters used in 
the simulation (Miedaner and Juroszek, 2021a). All of these contribute to the out-
come of pest risk projections (Gouache et al., 2013; Juroszek and von Tiedemann, 
2013b; Launay et al., 2020) and should be borne in mind when reading and interpret-
ing the results from simulation studies such as those listed in Table 2. In addition, 
it should be noted that the effect of climate change on pest risk can vary across a 
country (e.g. lowlands vs mountains, north vs south, summer vs winter, hot and wet 
vs cool and dry season), as recently highlighted by Miedaner and Juroszek (2021a).

According to Juroszek and von Tiedemann (2015), in general the projected change 
(increase or decrease) in pest risk will be more pronounced by the end of the twen-
ty-first century than earlier in the century if increasing temperature is the main driver 
of results. This reflects the fact that global warming is projected to be greater by the 
end compared to the middle and the beginning of the twenty-first century (e.g. 3 °C 
vs 2 °C vs 1 °C global temperature increase, respectively). 

The projected changes to pest risk vary according to geographical location (Sidoro-
va and Voronina, 2020). For example, in an early simulation study of future pest risk 
driven by a climate-change scenario, an increased risk of rice blast disease, caused 
by the fungus Magnaporthe grisea, was predicted for cool, subtropical rice-growing 
regions such as Japan, whereas in the humid, warm tropics, such as in the Philip-
pines, rice blast risk was predicted to decrease in the future (Luo et al., 1995, 1998). 
Regarding insect pests, projections by Kocmánková et al. (2011) suggest that the 
European corn borer (Ostrinia nubilalis) and Colorado potato beetle (Leptinotarsa 
decemlineata) will probably increase their ranges in many parts of Europe, colonize 
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projected temperature increase. On the other hand, climate warming may cause 
temperature increases which are near the upper lethal limit of some insect species, 
especially during the summer in temperate climates (Bale and Hayward, 2010; Har-
vey et al., 2020) and in the already very warm tropics (Deutsch et al., 2008). This var-
iation in impact with geographical location means that generalizations should be 
treated with extreme caution and researchers need to be very careful when extrapo-
lating their results (Juroszek et al., 2020).

Recently, Seidl et al. (2017) published a comprehensive, global analysis of available 
results (more than 1 600 single observations) and concluded that around two-thirds 
of all observations show that the risk of abiotic (e.g. fire, drought) and biotic (e.g. in-
sect pests, pathogens) stress factors will increase in forestry worldwide. Warmer and 
drier conditions favour disturbances by insects, whereas warmer and wetter con-
ditions favour disturbances from pathogens. The same trend is expected for many 
crop diseases (e.g. Juroszek and von Tiedemann, 2015), insect pests (e.g. Choud-
hary, Kumari and Fand, 2019) and weeds (e.g. Clements, DiTommaso and Hyvönen, 
2014), with increasing pest risk in most cases. Thus, preventive, mitigation and ad-
aptation measures are needed in the future to reduce the projected increases in pest 
risk in agriculture, horticulture, forestry as well as in urban areas and national parks 
(Edmonds, 2013; Pautasso, 2013). There is currently an ongoing debate between 
conservationist movements and plant-health services on how to treat pest infesta-
tions in national parks and protected areas and the emotive subject of whether to 
intervene in currently unmanaged ecosystems. 

Effects on pest species

Climate-change effects on pest species are complex and include direct and indirect 
effects and their possible interactions. At a given location, a shift in warming and 
other climate and atmospheric conditions may result in direct or indirect effects on 
insect pests, pathogens, and weeds. Possible direct and indirect effects on pests 
include: changes in their geographical distribution, such as range expansion or re-
treat, or increased risk of pest introduction; changes in seasonal phenology, such as 
the timing of spring activity or the synchronization of pest life-cycle events with their 
host plants and natural enemies; and changes in aspects of population dynamics, 
such as overwintering and survival, population growth rates, or the number of gen-
erations of polycyclic species (Juroszek and von Tiedemann, 2013a; Richerzhagen 
et al., 2011).

In general, all important life-cycle stages of insect pests, pathogens, and weeds (sur-
vival, reproduction and dispersal) are more or less directly influenced by tempera-
ture, relative humidity, light quality or quantity, wind or any combination of these 
factors. The physiological processes of most pest species are particularly sensitive 
to temperature (Juroszek et al., 2020). For example, plant viruses and their insect 
vectors may be particularly favoured by high temperatures until their upper temper-
ature threshold is reached (Trebicki, 2020). In a three-year field experiment in maize 
under tropical climatic conditions, Reynaud et al. (2009) showed that the incidence 
of maize streak disease (caused by the Maize streak virus) and the abundance of its 
vector, the leafhopper Cicadulina mbila, were closely associated with temperature, 
both increasing quickly above 24 °C, but that temperatures of 30 °C and above might 
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be detrimental for the leafhopper and related virus transmission (Juroszek and von 
Tiedemann, 2013c). It might be expected, therefore, that global warming will pro-
mote many insect vectors and the viruses they transmit, at least within a certain 
temperature range. 

Indirect effects are mediated through the host plant or through climate-change driv-
en adaptations to crop management (Juroszek et al., 2020). Warmer mean air tem-
peratures, especially in early spring under temperate climatic conditions, may re-
sult in life-cycle stages in the host plant occurring earlier in the season (Racca et al., 
2015). This can affect pathogens that infect the host during a particular life-cycle 
stage, for instance wheat pathogens such as Fusarium species that infect wheat dur-
ing flowering (Madgwick et al., 2011; Miedaner and Juroszek, 2021a). Crop-manage-
ment adaptations driven by climate change include the introduction of irrigation, 
cessation of deep soil tillage, shifting of sowing dates, and the cultivation of more 
than one crop per year. Irrigation of maize in south-east Africa, for example, has per-
mitted year-round cultivation of maize, but has also led to an increase in insect-vec-
tor populations, culminating in increased Maize streak virus pressure in irrigated and 
subsequently also in rainfed crops (Shaw and Osborne, 2011).

Interactions between factors affecting pests may be complex. For example, experi-
ments under real-world field conditions in FACE facilities have shown the complex-
ity of interactions between weed growth and temperature, water and CO2 under 
changed environmental conditions (Williams et al., 2007), and other experiments 
have shown that water stress can alter the competitive relationships between weed 
and crop plants in terms of their response to elevated CO2 concentration (Valerio 
et al., 2011). Under well-watered conditions, the growth of the C3 tomato crop (Lyco-
persicon esculentum) benefits more from elevated CO2 relative to the C4 weed Am-
aranthus retroflexus, whereas under water stress A.  retroflexus benefits more from 
elevated CO2 compared to tomato. Experiments such as these (Valerio et al., 2011; 
Williams et al., 2007), conducted under controlled and field conditions, therefore 
suggest that plant responses to elevated CO2 are not predictable on the sole basis 
of the type of photosynthetic pathway (C3 vs C4), because there are complicated in-
teractions with factors such as water availability and temperature, among others. 
These conclusions are in agreement with a recently published meta-analysis (Vila 
et al., 2021), especially performed to understand the combined impacts of weeds 
and climate change on crops.
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Some pests have already expanded their host range or distribution, at least in part 
due to changes in climate. Examples of these pests, selected according to their rel-
evance in different geographical areas, are summarized below. Examples of some 
likely effects of climate change on plant pests (insects, pathogens and weeds) in dif-
ferent climate zones are listed in Table 3.

Insects

1. 	 Emerald ash borer (Agrilus planipennis) (Asia, Europe, North America)

The emerald ash borer, Agrilus planipennis, is a phloem-feeding beetle that infests 
ash trees (Fraxinus spp.) (EPPO, 2021b). The adult beetles feed on the ash foliage, 
but it is the extensive larval feeding in the phloem and cambium that disrupts trans-
location in the tree, girdling the tree (i.e. removing a ring of bark around the entire 
circumference of the branch of trunk) and resulting in its death.

Native to north-east China, the Korean peninsula and the east of the Russian Federa-
tion, the emerald ash borer has spread to other parts of Asia, North America (Canada 
and the United States of America) (Haack et al., 2002) and Europe (e.g. the western and 
southern parts of the Russian Federation, and Ukraine) (CABI, 2021b). It was probably 
introduced into North America, for example, in 2002 via wood packaging material, and 
dendrological studies indicate that it arrived on the continent about a decade before 
its detection. The subsequent spread of the beetle to various parts of the United States 
of America and Canada was probably facilitated by the movement of infested nursery 
stock, logs and firewood (Herms and McCullough, 2014; Ramsfield et al., 2016).

The impacts of the beetle are severe. Aukema et al. (2011) considered it to be the 
most destructive and costly invasive forest insect in the United States of Ameri-
ca, with projections of economic losses from this insect up to 2020 exceeding USD  
12.5 billion. The invasion of this beetle has also had important implications for biodi-
versity in the affected areas, as ash trees provide food, shelter and habitat for many 
species. Furthermore, it has been suggested that the invasion of the emerald ash 
borer and the consequent loss of trees has possible implications for human health 
(Donovan et al., 2013). Management strategies have focused on containment, for 
example by using quarantine zones, and on reducing population densities, such as 
through the introduction of biological control agents. Eradication was initially at-
tempted and later abandoned (Herms and McCullough, 2014).

The distribution of ash trees is the main limitation on the range of the emerald ash 
borer, but climate is also thought to play an important role. In its native range, the 
emerald ash borer occurs in only a fraction of the range of the ash, but modelling by 
Liang and Fei (2014) has projected that climate change would result in a more north-
erly distribution of the beetle in North America, and a subsequent long-lasting risk to 
ash in those areas. However, it is expected that the southward invasion of the emer-
ald ash borer in North America would be limited within a warming climate-change 
scenario, as the beetle requires strong seasonality with a long winter season. Re-
search by Duan et al. (2020) on the overwintering survival of several introduced lar-
val parasitoid species of the emerald ash borer after an extreme climate event (low 
winter temperatures) has also shown that extreme climate events associated with 
climate change could reduce the efficacy of biological control of the beetle.
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2. 	 Tephritid fruit flies (global)

Tephritids are a diverse family of insects, with more than 4 000 described species. 
Most of the species feed on plants and several can cause substantial economic dam-
age, especially when their larvae develop in fruits of high market value. The family 
contains several invasive species, such as Bactrocera oleae (Figure 7 and Gutierrez 
et al., 2009), which feeds only on olive trees (and a few wild relatives), Bactrocera dor-
salis, which feeds on several dozen fruit plant species, and the Mediterranean fruit 
fly, Ceratitis capitata, which feeds on a moderate number of tree crops.

Tephritids have been able to expand geographically from their original distribution 
to colonize both neighbouring areas and new regions owing to the expansion of cul-
tivation of their hosts, international trade, and because climate change has allowed 
their winter survival and reproduction in habitats otherwise unsuitable for the spe-
cies. Bactrocera oleae occurs in Africa, Europe and Asia and has invaded California 
and Mexico more recently (CABI, 2021c). However, Godefroid et al. (2015) concluded 
that the species may establish not only in the temperate Mediterranean-climate re-
gions but also in the colder climates of northern latitudes in Europe, where olive 
trees are yet to be cultivated. 

Bactrocera dorsalis is a pest of major concern throughout south-east Asia and fur-
ther west through to Pakistan and north to southern China and Nepal; it has been 
reported in other areas, including most of Africa, the eastern United States of Amer-
ica, and several islands in the Pacific (EPPO, 2021c). As it has a wide host range, it 
is being intercepted often in international markets. Because the climatic range of 
B.  dorsalis is primarily tropical and subtropical and it is considered to have rath-
er complex requirements, the risk of direct economic losses from an incursion into 
temperate areas is low, but climate modification by global warming could allow a 
rapid increase in fly populations in mild seasons, with the flies spending the win-
ter protected in fruits stored in sheltered places (EPPO, 2021c). This is also the case 
for C. capitata, which occurs in southern and central Europe, most of Africa and the 
Near East, Central and South America, and Western Australia, but can overwinter in 
colder regions as larvae, in fruits stored in warm places. It can spread through the 
international trade of oranges, mandarins and lemons (Fedchock et al., 2006). 

3. 	 Red palm weevil (Rhynchophorus ferrugineus) (Near East, Africa, Europe)

The red palm weevil, Rhynchophorus ferrugineus, is one of the most economically 
damaging insect pests of palm trees. Native to south-east Asia and Melanesia, lar-
vae of this weevil feed within the apical growing point of the tree, causing extensive 
damage to the plant tissue, weakening the structure of the plant and in many cases 
resulting in tree death. In the Gulf region of the Near East, the annual losses due to 
death and removal of palms severely infested by red palm weevil have been estimat-
ed to range from USD 5.2 million to 25.9 million at 1 and 5 percent infestation, re-
spectively (El-Sabea, Faleiro and Abo-El-Saad, 2009). Another estimate has consid-
ered the annual losses due to red palm weevil to be USD 15 million (Al-Ayedh, 2017).

The red palm weevil infests various palm species, including coconut and date 
palm (El-Mergawy and Al-Ajlan, 2011; FAO, 2020). It was first detected on date 
palms in the Near East in the mid-1980s, and subsequently spread to other coun-
tries in the Near East, and to Africa and Europe. In 2010, it was detected in Cali-
fornia in the United States of America, where it was declared eradicated in 2015.  
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shoots as planting material. Management strategies include the use of various 
cultural and phytosanitary measures, such as removal of infested trees, the ap-
plication of insecticides and of nematodes pathogenic to insects, and the use of 
pheromone traps (FAO, 2020; Ge et al., 2015).

The distribution of the red palm weevil may expand because of climate change. Ge 
et al. (2015) predicted that in China the number of areas highly favourable to this 
pest would increase with climate change, resulting in the expansion of the insect 
into north China. Among the Rhynchophorus species, the red palm weevil is the only 
one that has significantly expanded its geographical range from its original home in 
south and south-east Asia (Wattanapongsiri, 1966). It has been reported in 45 coun-
tries and ecological-niche modelling predicts that it could expand its range even 
further (Fiaboe et al., 2012). The red palm weevil is still considered to be the major 
challenge for palm growers in the Near East, and despite all means of integrated 
control, its damaging effects are still causing great economic losses. 

4. 	 Fall armyworm (Spodoptera frugiperda) (Americas, Africa, Asia)

The fall armyworm (Spodoptera frugiperda) is a moth belonging to the family Noc-
tuidae (Figure 7). It has a host range of hundreds of plant species, inflicting severe 
damage in grasses – particularly maize and sorghum, which are the preferred hosts 
– along with other crops, such as rice, cotton and soybean preferred by different 
species strains. It is native to tropical and-subtropical areas of the Americas and dur-
ing summer it migrates into southern and northern temperate American regions. 
The pest was first reported in western Africa in 2016 (Goergen et al. 2016) and then 
throughout sub-Saharan Africa and Egypt in 2019. In 2018, it was reported in India, 
rapidly spreading all over southern and eastern Asia including China, the Republic 
of Korea, Japan and Pakistan. It has also been reported in Bangladesh, Indonesia, 
Myanmar, Sri Lanka, Thailand, the Philippines, Viet Nam and Yemen (EPPO, 2020a). 
In 2020, the fall armyworm was first detected on maize in Jordan and the United Ar-
ab Emirates (IPPC Secretariat, 2020a; 2020b) and in Israel (EPPO, 2020b). It has also 
spread across the Australian continent (IPPC Secretariat, 2021).

The fall armyworm is adapted to warm climates and not able to enter diapause, and 
its geographical distribution is closely dependent on climatic conditions. Adults can 
travel up to several kilometres in a single night and seasonal migrations can reach 
Canada from the southern United States of America. Ramirez-Cabral, Kumar and 
Shabani (2017) have highlighted the expansion of its geographical range in warm-
er climates because of its adaptability to different environments, its high dispersal 
capacity, the wide range of potential hosts and the intense international trade of 
commodities attacked by the larvae or pupae of the moth. They have also predicted 
a reduction or even partial disappearance of the species in the southern American 
hemisphere, due to the warmer and drier conditions expected there in the middle or 
end of this century in the north of the sub-continent. In the European Union, some 
warm areas in Spain, Italy and Greece could provide suitable climatic conditions for 
the establishment of the species, mainly from populations established in the North 
of Africa (Jeger et al., 2018). 
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5. 	 Desert locust (Schistocerca gregaria) (Africa, western and southern Asia) 

The desert locust (Schistocerca gregaria) is found mainly in Africa, through Arabia 
and western Asia, extending into parts of southern Asia (FAO, 2021a). It has been re-
ported occasionally in south-west Europe. It swarms and voraciously feeds on key 
crops such as maize and sorghum, pastures, and any green vegetation that comes 
its way, thereby significantly affecting smallholder farmers and pastoralists (Kimathi 
et al., 2020). 

The desert locust shows periodic changes in its body form and can change over gen-
erations, in response to environmental conditions, from a solitary, highly fecund, 
non-migratory form to a gregarious, migratory phase in which it may travel long dis-
tances, finally invading new areas. In general, the desert locust breeds extensively in 
semi-arid zones, extending from western Africa through the Near East to south-west 
Asia, threatening the livelihoods of people in over 65 countries. However, there is also 
a much less well-known subspecies, S. gregaria flaviventris, that occupies a limited 
area in southern Africa, and the potential of this subspecies to pose a threat in the 
future should be investigated (Meynard et al., 2017). 

Large outbreaks of desert locust have been recorded over many centuries, and the 
FAO keeps a long-term, large-scale monitoring survey database on affected areas. 
Identifying the potential breeding sites of the pest is essential if cost-effective and 
timely preventive measures are to be carried out before the pest inflicts significant 
damage (Kimathi et al., 2020). Since the 1960s, outbreaks have been less frequent, 
but in 2019–2020 unprecedented locust breeding was observed in Eritrea, Somalia 
and Yemen, due to unusually heavy rainfall in the Horn of Africa. The current strategy 
for managing swarms of the locust is aerial spraying with chemical pesticides, which 
has high negative impacts on humans, livestock, the environment and biodiversity. 

The behaviour, ecology and physiology of the desert locust changes in response to 
some climatic conditions. Attribution of a single event to climate change is difficult, 
but climatic changes such as increases in temperature and rainfall over desert are-
as, and the strong winds associated with tropical cyclones, provide a new favoura-
ble environment for pest breeding, development and migration. This suggests that 
global warming has played a role in providing the conditions required for the de-
velopment, outbreak and survival of the locust. But the impact of climate change is 
complex and the FAO’s Commission for Controlling the Desert Locust in south-west 
Asia (FAO, 2021a) has therefore highlighted the need for international cooperation 
across affected countries to tackle the locust threat. Where it will fly next depends on 
wind direction, speed, and other weather parameters. Consequently, climate change 
may have an impact on future migration routes of the desert locust. The prediction 
of risk under different climate-change scenarios, however, may need to differentiate 
between different subspecies, because each of them may have different niche re-
quirements. 
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Table 3. 	Examples of some likely effects of climate change on plant pests (insects, pathogens and weeds)  
in different climate zones

CLIMATE ZONES 
LIKELY EFFECTS OF CLIMATE CHANGE ON FUTURE PEST RISK (MAINLY 
2050–2100) REFERENCES 

Artic More increasing pest risk in the tundra Revich, Tokarevich and Parkinson, 2012.

Boreal More increasing insect pest and plant disease risk in boreal forests Seidl et al., 2017.

Temperate More increasing insect pest risk in agriculture and forestry Grünig et al., 2020.

More increasing insect pest and plant disease risk in forests Seidl et al., 2017.

More increasing disease risk in agriculture and horticulture (mostly based 
on western European studies)

Juroszek and von Tiedemann, 2015; 
Miedaner and Juroszek, 2021a.

Often poleward shift of insect pest and pathogen risk in different managed 
and unmanaged ecosystems

Bebber, Ramotowski and Gurr, 2013.

Often range expansion of important insect pests in agriculture and 
horticulture Choudhary, Kumari and Fand, 2019.

More increasing risk of weeds in different managed and unmanaged 
ecosystems

Clements, DiTommaso and Hyvönen, 
2014.

Subtropical Increasing saturation of insect pest risk in agriculture and forestry in 
southern Europe

Grünig et al., 2020.

More increasing disease risk in agriculture and horticulture Gullino et al., 2018.

Often range expansion of important insect pests in agriculture and 
horticulture Choudhary, Kumari and Fand, 2019.

Tropical Insects will often face supra-optimal temperature conditions in the future, 
presumably resulting in decreasing insect pest risk

Deutsch et al., 2008.

More decreasing disease risk in agriculture and horticulture (based on 
Brazilian simulation studies); however, also more increasing disease risks 
(based on both simulation studies and expert opinions) (e.g. due to location-
dependent outcomes)

Angelotti et al., 2017; Ghini et al., 2011; 
Juroszek and von Tiedemann, 2015.

Notes: Derived from references (examples) that analysed or summarized many, or at least several, results within a discipline or across disciplines.  
Most results are related to the northern hemisphere, especially the temperate zone. In India, increasing insect pest risks have already been observed, but 
without discriminating between climatic zones (e.g. Rathee and Dalal, 2018).
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Figure 7

Spodoptera frugiperda, fall armyworm (Lepidoptera: Noctuidae) 
(a) Maize ear damaged by larvae; (b) larva and damage in  
whorl-stage maize. 

A B

Source: EPPO (2020b); courtesy B.R. Wiseman, 
USDA/ARS, Tifton (United States of America).
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6. 	 Coffee leaf rust (Hemileia vastatrix) (Africa, Asia, Latin America)

Coffee leaf rust, caused by Hemileia vastatrix, is one of the main factors limiting ar-
abica coffee yield worldwide. Early and highly aggressive outbreaks of the disease 
have caused serious losses (up to 50–60 percent yield losses) in some Latin Ameri-
can countries, such as Colombia and Mexico, in the past few years.

Climate appears to play a role in the prevalence of the disease. One of the factors 
that promoted the occurrence of the rust epidemics in Central America was a re-
duction in the diurnal thermal amplitude, decreasing the latency period of the dis-
ease (Avelino et al., 2015). The shorter latency period promotes rapid increase of the 
pathogen population. Similarly, the pathogen’s incubation period may be reduced 
with global warming. The analysis by Ghini et al. (2011) on future climate-change 
scenarios in Brazil indicated a trend of reduction in the incubation period of H. vas-
tatrix, meaning that more generations of this pathogen could develop within a 
growing season. Consequently, the risk of coffee leaf rust epidemics might increase 
in the future, unless other factors change to mitigate disease risk, such as a reduced 
ability of the pathogen to infect coffee plants. Less cold winters can increase the 
amount of inoculum, in anticipation of pathogen infection (Avelino et al., 2015), but 
cold temperatures may not present a problem for the pathogen, considering that 
in Africa the displacement of coffee production to cooler and higher altitude re-
gions has not limited the occurrence of coffee leaf rust because it was already wide-
spread (Iscaro, 2014) and can adapt to different climates (Avelino et al., 2015). Thus, 
coffee leaf rust has been, and still is, one of the greatest challenges to global coffee 
production, and it will require the development of new strategies to guarantee its 
management, particularly if climate change affects the biology of the pathogen in 
the ways indicated by these studies.

7. 	 Banana Fusarium wilt (Fusarium oxysporum f. sp. cubense) TR4 (Australia, 
Mozambique, Colombia, Asia, Near East)

The soil-borne fungus Fusarium oxysporum f. sp. cubense causes Fusarium wilt on 
banana. The planting of ‘Cavendish’, a resistant cultivar, was the solution found for 
the devastation caused by race 1 of the pathogen (Ploetz, 2005; Stover, 1986). How-
ever, a new strain of F. oxysporum, tropical race 4 (TR4), was found in 1990 in eastern 
Asia, parts of south-east Asia, and northern Australia, attacking ‘Cavendish’ clones in 
the tropics (Ploetz, 2005; Ploetz and Pegg, 2000). Since 2010, this race has spread to 
south and south-east Asian countries (India, the Lao People’s Democratic Republic, 
Myanmar, Pakistan and Viet Nam), the Near East (Israel, Jordan, Lebanon and Oman), 
Africa (Mozambique) (Dita et al., 2018) and South America (Colombia) (García-Basti-
das et al., 2019). This disease is a great threat to ‘Cavendish’ banana growers world-
wide, irrespective of whether they farm on a large or small scale (Mostert et al., 2017). 
High temperatures, such as where temperatures rise from 24 to 34 °C, and extreme 
environmental events including cyclones and tropical storms, may increase the risk 
of the disease, particularly when ‘Cavendish’ banana plants suffer waterlogged soil 
(Pegg et al., 2019; Peng, Sivasithamparam and Turner, 1999). As there are still no ba-
nana cultivars resistant to TR4 and chemical control of the pathogen is not effective, 
preventive measures are the only option to manage the risk of Fusarium wilt disease 
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(TR4). These include, for example, using disease-free ‘Cavendish’ banana planting 
material, detecting diseased plants early, and destroying diseased plants as soon as 
Fusarium wilt symptoms are observed (Pegg et al., 2019).

8. 	 Xylella fastidiosa (Americas, southern Europe, Near East)

Xylella fastidiosa – a xylem-limited, Gram-negative bacterium – causes diseases on 
economically important crops, such as grapevine, citrus, olive, almond, peach and 
coffee, and in ornamental and forestry plants (Janse and Obradovic, 2010; Wells 
et al., 1987). It was reported in North and South America and Asia in the 1980s (Cor-
nara et al., 2019). In 2013, X. fastidiosa subsp. pauca was reported on olive trees in 
southern Italy, causing severe losses and profoundly modifying the landscape typi-
cal of the local area by destroying centenary olive trees (Saponari et al., 2013). X. fas-
tidiosa is transmitted by numerous species of sap-sucking hopper insects, including 
spittlebug and sharpshooter leafhoppers, mainly of the Aphrophoridae and Cicadel-
lidae families (Almeida et al., 2005; Cornara et al., 2019).

Models of species bioclimatic distribution have shown that X. fastidiosa has the po-
tential to expand beyond its current distribution and may reach other areas in Italy 
and elsewhere in Europe (Bosso et al. 2016; Godefroid et al., 2018). There are differ-
ent subspecies identified for this bacterium, mainly fastidiosa, multiplex and pauca. 
According to the modelling predictions, the subspecies multiplex, and to a certain 
extent the subspecies fastidiosa, represent a threat to most of Europe, while the cli-
matically suitable areas for the subspecies pauca are mostly limited to the Mediter-
ranean countries (Godefroid et al., 2019). Through a predictive risk-ranking model, 
Frem et al. (2020) recently revealed that the Mediterranean basin, particularly Leba-
non, runs the highest risk for establishment and spread of X. fastidiosa. Even though 
many Mediterranean countries are currently free of X. fastidiosa, in the near future 
they will be subject to a high risk of X. fastidiosa entry and establishment: Turkey is at 
the highest risk, followed by Greece, Morocco and Tunisia, which are ranked at high-
risk level. Only three countries in the region (Bahrain, Libya and Yemen) are subject 
to the least risk level in terms of potential entry, establishment and spread of the 
bacterium. Notably, the problem is not limited to the Mediterranean. On the basis of 
disease symptoms and laboratory analysis, X. fastidiosa has been found associated 
with almond leaf scorch and Pierce’s disease in grapevine in several provinces of the 
Islamic Republic of Iran (Amanifar et al., 2014), indicating that it will start to spread to 
neighbouring countries in the Near East.

Bosso et al. (2016) have predicted that climate change will not further increase the 
risk of X. fastidiosa in the future in most of the Mediterranean region, but the com-
plete “host plant–vector–bacterium” relationship should also be considered when 
predicting future risk. Fortunately, vector performance is likely to suffer due to su-
pra-optimal temperature and suboptimal humidity conditions, as recently simulat-
ed by Godefroid et al. (2020).

Management of X. fastidiosa will rely on the development of efficient strategies for 
integrated pest management, including improvements in detection of the pathogen 
and insect vectors, agricultural practices, and – last but not least – effective quaran-
tine treatments to control the spread of the pathogen.
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s 9. 	 Oomycetes, including Phytophthora infestans and Plasmopara viticola 

(global)

The potential displacement of oomycetes poleward because of climate change will 
present a challenge for plant protection, mainly in the northern hemisphere (Beb-
ber, Ramotowski and Gurr, 2013). Phytophthora infestans, the oomycete that causes 
late blight in potato and tomato, has a great capacity to adapt to changing condi-
tions, which is an important factor determining the risk of severe epidemics in the 
future. Indeed, several studies have suggested an increasing risk of P. infestans inci-
dence in several countries (Hannukkala et al., 2007; Perez et al., 2010; Skelsey et al., 
2016; Sparks et al., 2014), requiring the development of new strategies to control the 
disease and reduce its impact on food security, such as postponing the start of the 
potato growing season (Skelsey et al., 2016; Wu et al., 2020).

Studies in Egypt on the impact of climate change on tomato and potato late blight 
have shown how warmer winter weather affects their incidence and management 
(Fahim, Hassanein and Mostafa, 2003; Fahim et al., 2011). These have indicated that 
an epidemic of late blight on tomatoes occurring one to two weeks earlier would 
mean that two to three additional sprays would be needed to achieve sufficient 
control of the disease. Up to three additional fungicide sprays would therefore be 
needed each growing season in Egypt during the coming decades (2025–2100).  
As for potato late blight, caused by the same pathogen, comparison of weather con-
ditions and disease occurrence in epidemic versus non-epidemic growing seasons 
has shown that wet and warm winter seasons promote potato late blight epidemics 
in Egypt. Favourable conditions in the winter allow a build-up of pathogen inoculum 
on early cultivars early in the growing season, leading to a tendency for the blight 
to appear in later-planted potato crops. It can therefore be expected that climate 
change will promote late blight epidemics in the future. However, there is a great 
need for further assessments of the impact of climate change on crop diseases in 
Egypt and other Near East countries (Fahim et al., 2011).

Downy mildew of grapevine, caused by the oomycete Plasmopara viticola, is anoth-
er serious disease resulting in substantial production losses, varying from 5 percent 
yield losses up to 30–40 percent in most grape-growing regions. In the case of wine 
production, downy mildew also affects wine quality. As many of these regions have 
a temperate climate with temperatures that are suboptimal for the pathogen, an 
increase in air temperature will favour the occurrence of the disease. Studies consid-
ering future climate-change scenarios have therefore projected earlier disease out-
breaks that require more treatments to control them (Angelotti et al., 2017; Salinari 
et al., 2006, 2007). Short-term studies carried out in phytotrons have also confirmed 
an increased severity of grape downy mildew under simulated climate-change con-
ditions (Pugliese, Gullino and Garibaldi, 2010). 

10. 	Fungi producing mycotoxins (global) 

In general, climate change is expected to result in an increased presence of myco-
toxins in crops, but the complexity of the fungal flora associated with each crop and 
its interaction with the environment means that it is difficult to draw conclusions 
without conducting specific studies. Nevertheless, there are many results availa-
ble. For instance, the work carried out by Battilani et al. (2016) indicates that global 
warming could extend the northern limit of aflatoxin risk in maize in Europe, and Van 
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der Fels-Klerx, Liu and Battilani (2016) have made quantitative estimations of the 
impacts of climate change on mycotoxin occurrence. Medina et al. (2017) reviewed 
the impacts of climate change on mycotoxigenic fungi, examining the impacts of the 
three-way interactions between elevated CO2 (350–400 vs 650–1200 ppm), temper-
ature increases (+2–5 °C) and drought stress on growth and mycotoxin production 
by key spoilage fungi in cereals and nuts, including Alternaria, Aspergillus, Fusarium 
and Penicillium species. The growth of Aspergillus flavus, responsible for producing 
aflatoxin B1, appears to be unaffected by simulated climate-change scenarios. How-
ever, a significant stimulation of aflatoxin B1 production has been found both in vitro 
and in vivo in maize. In contrast, the behaviour of other Aspergillus species, respon-
sible for ochratoxin A contamination of a range of commodities, and Fusarium ver-
ticillioides, producing fumonisins, suggests that some species are more resilient to 
climate change than others, especially in terms of mycotoxin production. 

In addition to the effects of climate change on these commonly occurring fungi, 
climate change could also influence the mycotoxin production of emerging patho-
gens, such as the increases shown experimentally by Siciliano et al. (2017a, 2017b) in 
Alternaria and Myrothecium species. Furthermore, acclimatization of mycotoxigenic 
fungal pathogens to climate-change factors may result in increased disease and per-
haps mycotoxin contamination of staple cereals as well as other crops. Thus, man-
aging mycotoxin risks will remain a great challenge in the future (Juroszek and von 
Tiedemann, 2013b) as climate change could worsen the situation (Miedaner and 
Juroszek, 2021b).

Nematodes

11. Citrus lesion nematode (Pratylenchus coffeae) (global)

The citrus lesion nematode, Pratylenchus coffeae, is widely distributed in citrus or-
chards worldwide. It mainly infests the plant via the feeder roots, where motile stag-
es of the pest penetrate the cortical tissue. The vascular tissue remains intact until 
invaded by other organisms in a secondary infection (Duncan, 2009). The nematode 
is known to reduce citrus root weights by as much as half, and experimental inocula-
tion of young trees has shown growth reductions ranging from 49 to 80 percent, with 
a three- to 20-fold reduction in the numbers of fruits (O’Bannon and Tomerlin, 1973). 
Recent studies on current climate change in Egypt indicate that higher tempera-
tures may aggravate the damage caused by the citrus lesion nematode to the citrus 
root system, because the nematode’s reproduction rate is highest when soil temper-
atures are relatively high (26–30 °C) (Abd-Elgawad, 2020). At such temperatures, the 
life cycle is completed in less than one month and the pathogen may reach density 
levels as high as 10 000 nematodes/g root; the nematode can also survive in roots 
in the soil for at least four months. Unfortunately, however, commercial rootstocks 
resistant to this nematode are not available yet (Abd-Elgawad, 2020).

12. Soybean cyst nematode (Heterodera glycines) (global)

The soybean cyst nematode (Heterodera glycines) is the most economically dam-
aging pathogen of soybean (Glycine max) in the United States of America and Can-
ada (Tylka and Marett, 2014). It also causes considerable yield losses in many other 
major soybean-producing countries, such as Argentina, Brazil and China. Thus, its 
potential for causing serious worldwide yield loss is high.
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southward (southern hemisphere) expansion of the nematode’s geographical 
range, and increase the number of nematode generations per soybean crop-grow-
ing season (St-Marseille et al., 2019) until supra-optimal temperature conditions for 
the nematode are reached.

To manage the pest, the most important strategies are the use of resistant cultivars 
(Shaibu et al., 2020) and crop rotation (Niblack, 2005). According to Niblack (2005), 
rotation includes at least three different aspects: ideally, cultivating soybean only 
once every five years in any one field (although the benefit of crop rotation may be 
less if weeds are present that can act as alternative hosts of the pest); using non-host 
crop plants, including cover or catch crops in a wide crop rotation; and planting dif-
ferent resistant or tolerant soybean cultivars in different years in the same field, in 
order to minimize the adaptation potential of the nematode populations.

13. Pine wilt nematode (Bursaphelenchus xylophilus) (North America and 
eastern Asia)

According to Jones et al. (2013), the pine wilt nematode, B. xylophilus, is native to 
North America, where it infests pine trees (Pinus species) but does not seriously dam-
age them. However, in its non-native environment, including Asia (China, Republic 
of Korea, Japan and others) and Europe (a few occurrences in Portugal and Spain), 
it is a serious pest, killing millions of pine trees. The nematode is vectored by the 
adult stage of Monochamus beetles, which fly among pine trees and across longer 
distances. It is expected that pine wilt disease will be increasingly favoured by global 
warming because Monochamus beetles, like many other forest insects (Seidl et al., 
2017), will benefit from increasing temperatures, particularly in temperate regions 
(Ikegami and Jenkins, 2018). A number of risk assessments carried out demonstrate 
that with increasing temperatures in temperate regions the mortality of conifers will 
increase. In the Mediterranean area, which is the most endangered area in Europe, 
high mortality of coniferous trees would have serious environmental consequences.

Weeds

14. Butterfly bush (Buddleja davidii) (global)

The geographical range of the invasive weed Buddleja davidii in Europe, North Amer-
ica and New Zealand is projected to expand by the end of the twenty-first century as 
growth limitations due to cold stress are reduced (Kriticos et al., 2011). In contrast, 
the range of this weed in Africa, Asia, South America, and Australia is projected to 
contract because of increased heat stress. Overall, the total area of land with suita-
ble growing conditions for the weed is projected to decrease by 11 percent on aver-
age (8, 10 or 16 percent, dependent on the climate-change scenario used). Possible 
adaptation strategies include the identification of areas of increasing and decreas-
ing invasion threat, so that management resources can be allocated appropriately 
to reduce further spread of the weed (Kriticos et al., 2011).
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15. Serrated tussock grass (Nassella trichotoma) (global)

Under current climate conditions, the grass weed Nassella trichotoma has consider-
able potential to spread. In future, opportunities to invade new areas that are suit-
able will continue, but by the end of the twenty-first century, it is projected that the 
total area suitable will have decreased globally between 20 and 27 percent (depend-
ing on the climate-change scenario used), mostly as a result of a projected increase 
in heat stress (Watt et al., 2011). Possible management strategies include identifying 
high-risk areas of invasion, applying measures to reduce human-assisted dispersal 
of seeds, and applying weed-control measures to reduce the wind-borne dispersal 
of seeds (Watt et al., 2011).
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The focus in this section is to review the measures that can be taken to pre-
vent, mitigate and adapt to the potential effects of climate change on pests 
and hence on plant health. Since interdependencies between plant ecosys-

tems exist, information on pest species and other species (e.g. beneficial or with no 
known economic effect) in agriculture, horticulture, forestry and unmanaged habitats 
are included, for two main reasons (Juroszek and von Tiedemann, 2013a). First, an 
interdisciplinary approach to the management of pests and diseases should be estab-
lished, because the knowledge gained in different disciplines can complement each 
other and should, therefore, be exchanged and used across disciplines (Jactel et al., 
2020; Wilkinson et al., 2011). Second, many pest species, especially mobile generalists 
and those not restricted to a certain habitat, live in both managed and unmanaged 
ecosystems. Interdisciplinary approaches are particularly important if pest species 
change their host range when crossing between unmanaged and managed ecosys-
tems, resulting in new emerging pest species in a crop or vice versa (Jones, 2016). 

Preventive measures 

The most effective way to prevent and limit the international spread of pests through 
trade and passenger movements is to regulate their movement through phytosani-
tary measures, and ensure that best agricultural practices are applied to reduce the 
incidence of pests to a low level. 

The regulatory aspects

According to Carvajal-Yepes et al. (2019) and Giovani et al. (2020), phytosanitary im-
port legislation is the first line of defence in any prevention of international spread. 
The objective of a phytosanitary import regulatory system is to prevent or limit the 
introduction of regulated pests with imported commodities and other regulated ar-
ticles and passengers. A phytosanitary import regulatory system usually consists of 
two components: a regulatory framework of phytosanitary legislation, regulations 
and procedures; and an official service, the national plant protection organization 
(NPPO), responsible for operation or oversight of the system (ISPM 20, 2019). The NP-
PO has a number of responsibilities in operating a phytosanitary import regulatory 
system, including certain responsibilities identified in Article  IV.2 of the IPPC (IPPC 
Secretariat, 1997). In relation to imports these include, but are not limited to, sur-
veillance, inspection, the conduct of PRA, and the training and development of staff. 

For a phytosanitary import regulatory system to remain effective in a situation of cli-
mate change, it will be all the more important to have good risk assessment capa-
bilities and to employ them to assess potential risk scenarios, taking climate change 
into account. The implementation of functioning and well-organized surveillance 
and monitoring activities will also be crucial. Official services will need to survey and 
monitor with more vigilance in order to detect promptly both new introductions (in-
cluding those establishing because of changing climatic parameters) and changes in 
pest status and to be able to react quickly (Carvajal-Yepes et al., 2019; Lopian, 2018; 
Giovani et al., 2020; STDF/World Bank, 2011).
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Pest risk analysis

The cornerstone of any efficient phytosanitary import regulatory system is the avail-
ability of a PRA conducted by an NPPO. Pest risk analysis provides the NPPO with 
the rationale for phytosanitary measures to prevent the introduction of pests, by 
evaluating scientific evidence to determine whether an organism is a pest (ISPM 2, 
2019). Pest risk analysis evaluates the probability of introduction and spread of the 
pest and the magnitude of its potential economic consequences in a defined area 
by using biological or other scientific and economic evidence. It may identify poten-
tial management options that can reduce the risk to an acceptable level. In addition, 
it can be used to establish phytosanitary regulations. Pest risk analysis also consid-
ers commodities and the risks associated with them from a particular area of origin. 
A suite of specific PRA standards to be used by countries in different situations have 
been developed under the auspices of the IPPC Secretariat.3 

As climate change has an effect on the biology and epidemiology of pests, PRA ac-
tivities will need to be intensified at national, regional and international levels and 
climate-change aspects will need to be incorporated into the assessment of plant-
health risks (Lopian, 2018). The introduction and spread of serious invasive pests 
can only be prevented if NPPOs are aware of the risks and this awareness is primarily 
the result of a PRA. In this context, it is important to ensure that climate-change im-
pacts are appropriately reflected in the PRA methodology and process to allow risk 
assessors to correctly analyse risks and to suggest mitigation measures. 

Surveillance and monitoring

One of the most essential activities of NPPOs is surveillance and monitoring for 
pests, which allows them to detect newly introduced pests early and consequently 
take immediate control and eradication actions. Usually, the earlier a pest is detect-
ed after introduction, the better are the chances that eradication measures will be 
successful. Accordingly, one of the major components of a strategy to address the 
dangers of pest introduction in a changing climatic context must be surveillance 
and monitoring (FAO, 2008) in order to allow the detection of new pest introduc-
tions. It is therefore not surprising that much of the work developed under the aus-
pices of the IPPC Secretariat has focused on surveillance and detection, including an 
ISPM (ISPM 6, 2018) and a manual on surveillance (IPPC Secretariat, 2016), together 
with a suite of diagnostic protocols for detecting and identifying pests and diseases. 

Climatic variability caused by climate change will have considerable effects on 
the design and implementation of appropriate surveillance and monitoring pro-
grammes carried out by official services. According to ISPM 6 (Surveillance), the suit-
ability of the climate and other ecological conditions in the area for the pest is one 
of the factors that may determine the sites selected for surveillance. Yet there are 
still considerable unknowns regarding the suitability of specific climatic conditions 
for individual species. 

3	 See all IPPC adopted International Standards for Phytosanitary Measures at https://www.ippc.int/
en/core-activities/standards-setting/ispms/
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The effects of climate change on the distribution of species are not yet well under-
stood, and the effects of climate change on microclimates and their species is cur-
rently under discussion and investigation. While it is suggested that microclimates 
can function as buffers to species extinction by creating so-called “microrefugia” 
(Suggitt et al., 2018), it is also acknowledged that knowledge about the effects of 
climate change on microclimates and their ecology is still too scarce and that more 
research is necessary to more accurately estimate the future climatic conditions ex-
perienced by organisms in microclimates (Maclean, 2020). Future surveillance and 
monitoring programmes will need to take account of the results from such research. 
Surveillance activities, however, may not only be limited to official surveys. The pos-
sibility to utilize “citizen science” for the detection of emerging plant-health threats 
is a promising tool and should be further considered.

International cooperation and information exchange

Climate change will shift agro-climatic zones (King et al., 2018). This shift may lead to 
new trade flows, providing agricultural products to countries that suffer most from 
the shortage of them. In cases where crop production for specific species shifts as 
a result of climatically changed conditions, trade routes for these species will al-
so change (Lopian, 2018). Exacerbating the above, the IPCC predicts that climate 
change will result in increased international agricultural trade in terms of both phys-
ical volume and commercial value (IPCC, 2014b). 

The shift of agricultural production zones, changed trade flows and the consequent 
increase of international agricultural trade volumes will, in combination with the 
limited knowledge of pest behaviour under new climatic and ecosystem conditions, 
result in a deficiency of reliable, scientifically verifiable information upon which risk 
assessors and regulators can base their assessments and mitigation measures. This 
deficiency could be alleviated through the establishment of a reliable international 
information-exchange network dedicated to providing official services with infor-
mation about the occurrence of pests and potential pathways. However, although 
the IPPC Secretariat does have an information-exchange mandate, the informa-
tion-exchange activities undertaken are extremely limited and are more of a passive 
nature, publishing reports made by contracting parties. Much still needs to be done, 
therefore, to enhance the international exchange of information.

Preventive pest-management practices

Best-available practices for pest management include, for example, production of 
clean seed and planting material, early warning systems, good diagnostic tools, 
and effective treatments such as seed dressings (Gullino, Gilardi and Garibaldi, 
2014b; Gullino and Munkvold, 2014; Munkvold, 2009; Munkvold and Gullino, 2020; 
Thomas et al., 2017), together with the associated sampling and monitoring. Oth-
er best-available practices include the use of resistant cultivars when available, the 
adoption of cultural practices promoting plant health, integrated pest-management 
systems, the application of rigorous hygiene measures, and the use of biological 
crop-protection products. These practices will become all the more important in 
the face of increasing and changing threats from pests due to climate change, and 
some adjustments are likely to be needed to maintain their effectiveness: for exam-
ple, crop rotation may involve species better adapted to local climatic conditions 
and the application regime for fungicides may need to be intensified (see Table 4).
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Table 4. Examples of some assumptions about the potential influence of changing atmospheric composition and climate 
on selected plant-disease management strategies or tools

CONTROL 
STRATEGY TOOL EXPECTED EFFECTS OF CHANGED CLIMATE POTENTIAL OF TOOL FOR ADAPTATION 

Avoidance
Barrier to entry 
(quarantine)

Climate-mediated change in pathogen dispersal – 
frequency, abundance, distance, speed.

Altered efficacy of quarantine practices likely. 
New phytosanitary measures, including the use 
of international (IPPC) standard treatments, will 
be needed.

Preventive Crop rotation
No direct effect; diversity in cropping systems will 
remain important to reduce risk of disease.

Crop species better adapted to local climatic 
conditions are possibly required.

Preventive 
Plant residue 
management

Potential increase in crop biomass through the 
CO2 fertilizing effect, unless high temperature and 
drought counterbalance the fertilizing effect.

Innovative approaches needed to reduce 
inoculum level and saprophytic colonization.

Preventive Sowing or planting date
Adjustments likely to be necessary; simple and 
cheap method to escape biotic and abiotic stress; 
however, disadvantages also possible.

Appears to be a powerful tool (often mentioned in 
the literature).

Preventive Host plant resistance 

Temperature dependent resistance may be 
overcome by pathogens; changes in plant 
morphology and physiology may affect resistance; 
potentially accelerated pathogen evolution may 
erode disease resistance prematurely.

Altered efficacy of host-plant resistance likely
(higher, same, and lower efficacy depending on 
resistance (R) gene, pathogen population, etc.).

Preventive 
Cleaning machinery 
and tools

Presumably no major effects. Phytosanitary methods will remain important.

Preventive 
Use of healthy seeds 
and plantlets

Presumably no major effects. Preventive methods will remain important.

Preventive 
Input levels 
(e.g. amount of 
irrigation)

Presumably higher temperatures will result in 
increased irrigation of more crops and in more 
regions.

Water conservation may demand efficient 
technologies such as drip irrigation, thereby 
reducing risk of foliar diseases. 

Preventive or 
curative

Field monitoring and 
use of decision-support 
systems

Presumably no major effects.
Field monitoring and decision-support systems 
will remain or become more important. 

Preventive or 
curative

Soil solarization 
(covering soil, usually 
with a plastic sheet, 
to trap solar energy in 
order to reduce pests in 
the soil)

Global warming may facilitate the use of this tool  
(it may be effective in more plant-pathogen systems 
and regions, heat may reach deeper soil layers, and 
duration of mulching period may be shorter).

Altered efficacy likely, but generally positive 
effects. 

Preventive or 
curative

Antagonists, biological 
control agents

Presumably, vulnerability of biological control 
agents will be higher due to climate variability.

Altered efficacy likely (higher, same or 
lower, dependent on product, environment, 
management, etc.).

Preventive or 
curative

Contact fungicides
If rainfall occurs more frequently, more applications 
may be triggered; faster or slower crop growth may 
shorten or lengthen the time between applications. 

Altered efficacy likely (higher, same or 
lower, dependent on product, environment, 
management, etc.). 

Preventive or 
curative

Systemic fungicides

More knowledge on foliar uptake process of 
systemic fungicides must be gained to make 
reliable predictions. Nevertheless, it is possible that 
with increasing temperature fungicide efficacy will 
be reduced, simply because pathogen growth will 
be stronger.

Altered efficacy likely (higher, same or 
lower, dependent on product, environment, 
management, etc.).

Source: Modified after Juroszek and von Tiedemann (2011).
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Recent technological developments

In the following paragraphs, one promising advance in technology – the use of na-
notechnology – is highlighted as an example of how new technologies can be har-
nessed to protect plant health. Nanotechnology provides tools for innovative and 
improved crop-protection products to address increasing pest risk, including that 
due to climate change. It is still under development and not yet widely applied in 
practice. It may also not be easily available in low-income countries, at least not 
immediately, for economic reasons. But it illustrates what is potentially possible. 
Improving such tools is very important and will be crucial in the future. 

Nanofertilizers and pesticides

Over the past two decades, advances in nanoscale science have driven new interest 
and research into the applications and implications of nanotechnology for sustain-
able agriculture (Scott, Chen and Cui, 2018). In addition to the foundational use of 
nanofertilizers for precision agriculture (Raliya et al., 2018), it has been suggested 
that nanotechnology may potentially improve the efficacy and safety of pesticides. 
The nanotechnology-produced pesticides would have a large surface area and be 
capable of precision delivery in response to environmental triggers such as temper-
ature, pH, humidity, enzymes and light (Bingna et al., 2018), as well as being soluble 
in water, thereby minimizing environmental residues (Zhao et al., 2018). Early exper-
iments with solid nanoparticles consisting of metal oxides, sulphur and silica proved 
successful in controlling a range of pests (Goswami et al., 2010). 

More recently, nanotechnology applications in the agricultural domain typically 
consist of the encapsulation of known herbicides, fungicides or insecticides into 
synthetic nanocarriers composed of clays, silica, lignin or natural polymers, includ-
ing alginate, chitosan and ethyl cellulose (Diyanat et al., 2019). Polycaprolactone has 
been used as a nanocarrier for the herbicide pretilachlor (Diyanat et al., 2019), the 
triazine herbicides atrazine, ametryn and simazine (Grillo et al., 2012), and the pesti-
cide avermectin (Su et al., 2020). Polycaprolactone has become popular because it 
naturally degrades in the environment, is inexpensive to produce and is not reliant 
upon petroleum plastic production (Sabry and Ragaei, 2018).

Nanopesticides have been very successfully tested for control of pine wilt nema-
tode, with nanoencapsulated avermectin shown to have superior toxicity to the 
nematode’s gastrointestinal system, greater sustained-release performance and im-
proved photolytic stability in comparison to a traditional delivery of avermectin (Su 
et al., 2020). Nanoencapsulating atrazine has also been found to reduce the harmful 
environmental effects of this herbicide, without negatively affecting the mortality 
rate of Bidens pilosa seedlings (Preisler et al., 2020). Nanoencapsulated atrazine in 
the latter study had inhibitory effects at 200 g/ha that were equivalent to those of 
nonencapsulated herbicide at 2 000 g/ha, representing a ten-fold reduction in the 
herbicide concentration. Also, in the case of mustard plants, polycaprolactone-en-
capsulated atrazine at a ten-fold dilution has been found to be as effective as non-di-
luted, nonencapsulated atrazine (Oliveira et al., 2015). 
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Enhanced breeding for resistance

Another opportunity for the use of nanotechnology in agriculture is as a delivery 
method for DNA transfer in plants to promote resistance to pests (Rai and Ingle, 
2012; Sabry and Ragaei, 2018), thereby reducing the use of potentially environmen-
tally harmful chemical pesticides. It has been proposed that nanoparticles could be 
used to passively deliver nuclease-based genome editing payloads as a method of 
plant genetic engineering. This method would overcome challenges to current gene 
transfer methods (such as gene-gun and ultrasound) caused by the physical barrier 
of a multi-layered and rigid plant cell wall that has caused progress in plant genetic 
engineering to lag behind that in animal systems (Cunningham et al., 2018). Some 
techniques for delivering DNA into animal cells can be adapted to plants under con-
trolled conditions (Chang et al., 2013; Torney et al., 2007).

Information sharing framework

To complement the development of advanced technologies such as those described 
above, there are also initiatives to promote the sharing of data and information. The 
MyPestGuide initiative in Australia, for example, incorporates weed reporting, field 
guides for pest identification, and decision management tools in a shared platform 
(Wright et al., 2018). A global framework for data sharing could help efforts to tackle 
fast-spreading and potentially high-impact pests (Carvajal-Yepes et al., 2019).
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Mitigation and adaptation 

With very few exceptions (e.g. Gouache et al., 2011), pest risk simulations have not 
included options that farmers and growers might take to mitigate for, or adapt to, an 
increased future pest risk. This is true for agriculture (Juroszek and von Tiedemann, 
2015) and forestry (Bentz and Jönsson, 2015). Nevertheless, in agriculture there are 
a range of potential short-term mitigation and adaptation options available and 
these should be considered, not only by farmers and growers but also for inclusion 
in simulation models to support future decision-making. Further development of 
tools required for adaptive management of pests will increase the probability of 
successful adaptation strategies in the future (Macfayden, McDonald and Hill, 2018).  

Improved host-plant resistance (and competitiveness of crop plants to weeds) and 
adjustments to pesticide application are considered by most scientists to be the 
two most effective ways of adapting crop protection to future climatic conditions 
(reviewed by Juroszek and von Tiedemann, 2015). Other options include adjust-
ments to sowing time, longer crop rotation, improved pest forecasting, adjustment 
of agronomic practices such as irrigation and fertilization, and provision of targeted 
advice (Juroszek and von Tiedemann, 2015). Interestingly, several other potential 
adaptation tools in crop protection, such as modification of the microclimate by 
altering sowing density, are not discussed at all in the literature related to pest risk 
simulations.

In forestry and agriculture, climate-smart strategies for pest management may also 
need to be adopted (Heeb, Jenner and Cook, 2019; Lipper et al., 2014). In general, in-
tegrated pest management includes a wide range of direct and indirect plant-health 
management measures (Heeb, Jenner and Cock, 2019; Juroszek and von Tiede-
mann, 2011). These include quarantine (biosecurity), other phytosanitary measures 
(e.g. healthy seeds and seedlings), careful monitoring and optimal timing of need-
ed interventions (Heeb, Jenner and Cook, 2019; Strand, 2000) or biological control  
(Eigenbrode, Davis and Crowder, 2015). 

In the context of adapting cropping systems to climate change, breeding for dis-
ease resistance is one of the most attractive options (Miedaner and Juroszek, 2021a, 
2021b). Varieties with tolerance to drought, high temperatures, and pests are crucial 
for food security in staple crops such as maize and beans as well as for cash crops for 
export, such as coffee and soybeans. Sometimes, new varieties allow adjustments 
in farming systems in order to moderate the pest risk associated with likely changes. 
For example, the availability of new wheat varieties permits wheat crops in central 
Queensland (Australia) to be planted three to four weeks earlier (Howden, Gifford 
and Meinke, 2010). Also, in the case of cocoa, a multi-criteria selection in develop-
ing new varieties is suggested in the context of climate change (Cilas and Bastide, 
2020). Although crop breeding, and especially tree breeding, has a long lag time in 
response to new challenges, models of climate-change effects on pest risk can help 
to inform strategies in advance of new problems. The identification, conservation 
and use of ancient varieties can also be useful. 
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In forestry, adaption to respond to potential climate-change effects is most likely 
to involve preventive measures, such as removing infested trees to avoid further 
spread of pests, because of the difficulties in effectively managing tall adult trees 
(Bonello et al., 2020; Liebhold and Kean, 2019). Another major preventive adapta-
tion option is the exploitation of genetic diversity: the choice of suitable tree spe-
cies, or pest-resistant or tolerant clones or cultivars if available, when new forests are 
planted (Bonello et al., 2020). 

The choice of adaptation strategies will depend on many factors. Cost is one factor, 
with Srivastava, Kumar and Aggarwal (2010) concluding that more low-cost adapta-
tion strategies, such as changing the sowing date and choice of cultivar, should be 
explored to reduce the vulnerability of crop production to climate change. The prac-
ticality of changing planting or harvesting dates, however, is dependent on the po-
tential yield penalty and on the location where the crop is grown, the cultivar prefer-
ences of farmers and consumers, and the market situation (Wolfe et al., 2008). More 
expensive adaptation options may also be needed (Juroszek and von Tiedemann, 
2011). This may involve, for instance, the development of more powerful methods to 
manage pathogens in crop residues, which could be combined with already well-es-
tablished methods such as crop rotation in order to avoid saprophytic colonization 
of crop residues by pathogens and to decrease the carry-over of inoculum between 
cropping seasons (Melloy et al., 2010). “Old-fashioned” methods such as turning 
the soil can also be a powerful way to manage diseased crop residues (Miedaner 
and Juroszek, 2021b), although conservation agriculture might be better suited in 
drought-prone areas. Ploughing the soil also entails more fuel input and hence more 
climate-relevant CO2 emissions compared to minimum tillage.

Finally, considering strategic planning, it is important to decide where to grow 
perennial agricultural crops such as date palms (Shabani and Kumar, 2013). With 
knowledge about where economically important crop diseases of such crops might 
occur in the future, low-risk locations could be identified in order to avoid or min-
imize the future impact of these diseases (Shabani and Kumar, 2013). This applies 
also to forestry, where planning is particularly important to avoid or minimize future 
increasing pest risks, as explained above. For annual crops such as oilseed rape, 
shifting of cultivation zones has been suggested as one of the adaptations under a 
worse-case scenario (Butterworth et al., 2010). Indeed, in Egypt, faba bean cultiva-
tion has been shifted from central Egypt to the cooler Nile Delta region in the north 
to escape the detrimental impacts of viral disease, possibly caused – at least in part 
– by global warming. 

All of the options highlighted above may have a role to play in allowing farmers and 
growers to mitigate for, and adapt to, an increased pest risk. In general, however, it 
will be important to favour and implement those technologies and practices that 
are able to simultaneously contribute to increased productivity and reduced vulner-
ability to the changes brought about by climate-relevant emissions including CO2, 
N2O and CH4.
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In recent decades, there has been an explosion in the volume of research on 
climate-change biology, resulting in many publications each year, particularly 
over the past ten years (e.g. Björkman and Niemelä, 2015; Juroszek et al., 2020; 

Peterson, Menon and Li, 2010). Most studies (summarized in Table 5) indicate that, in 
general, the pest risk from insects, pathogens and weeds will increase in agricultural 
ecosystems under climate-change scenarios (Choudhary, Kumari and Fand, 2019; 
Clements, DiTommaso and Hyvönen, 2014; Juroszek et al., 2020), especially in to-
day’s cooler Arctic, boreal, temperate and subtropical regions. Evidence suggests 
that all climates will be impacted but that the nature and extent of the impact will 
vary with the ability of production systems and natural ecosystems to adapt and 
evolve. This is also mostly true for pathogens and insect pests in forestry (Seidl et al., 
2017).

Climate-smart strategies for controlling pests were recently outlined by Heeb, Jen-
ner and Cook (2019). These and other preventive and curative plant-protection 
measures will be needed for countries to adapt to a new climate scenario (Almekin-
ders et al., 2019; Erikson and Griffin, 2014; Thomas-Sharma et al., 2016). But con-
sideration will also need to be given to regulatory arrangements, research needs, 
international cooperation and capacity building, and recommendations on these 
aspects are outlined in this section of the report. 

Policy making and regulatory issues

Adjusting pest risk analysis with regard to climate change

Pest risk analysis provides the scientific justification for all phytosanitary measures, 
including those developed under the auspices of the IPPC Secretariat. It is suggest-
ed that ISPMs relevant to PRA are assessed with regard to their suitability to address 
issues related to climate change. Pest risk analysis activities need to be intensified at 
national, regional and international levels and climate-change aspects need to be 
included in the assessment of pest risk. 

Surveillance and monitoring relevant to climate change

Surveillance and monitoring are important tools to detect the introduction of new 
pests or to monitor their status. It is suggested that ISPMs and guidance on these 
topics developed under the auspices of the IPPC Secretariat are assessed to deter-
mine whether they need revising to take account of the effects of climate change. 
National, regional and international surveillance and monitoring activities for plant-
health threats should be intensified. It is suggested that consideration be given to 
the development of model templates for multilateral surveillance programmes, es-
pecially for developing countries, to demonstrate how such programmes may be set 
up to offset phytosanitary threats. 
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Active information exchange and reporting

The international exchange of information on trade flows, pest occurrences and pest 
interceptions is extremely important to offset the paucity of information generated 
by scientific research with regard to the impacts of climate change on plant health. 
It is also critical that information on changes to pest distributions, host range, and 
adaptability of pests and host plants are shared. It is necessary to enhance the IPPC 
reporting system, which combines official reporting by contracting parties with other 
available and published information.

Research required 

Prominent research gaps related to climate change and pests are listed in Table 6. 
Funding bodies and organizations conducting research should consider these re-
search gaps, where possible, for inclusion in their research programmes. In par-
ticular, in most geographical areas greater attention needs to be paid to sustaining 
comprehensive and multidisciplinary research programmes. Research programmes 
should cover the need of industrialized as well as developing countries. A long-term 
financial commitment will be required in order to capture the long-term effects of on-
going and future climate change and related pest risk, including testing methods to 
minimize risk. For this reason, a few “hot spots” (climate-sensitive production areas) 
should be selected for implementation of long-term research and development ac-
tivities (“Climate Change Demonstration Sites for Pest Risk Analysis and testing Pest 
Risk Reduction Methods”, CCDS-PRA-PRRM).

In addition, investment by national governments should be directed to strengthen-
ing national surveillance systems and structures, such as diagnostic laboratories, 
in order to be able to rapidly counteract possible biological invasions. Moreover, 
well-functioning PRA units should be put in place, in order to be able to prevent them.

Some specific issues requiring research are highlighted below. 

Studies on the effect of climate change on plant-protection 
products and on management strategies

There are many research gaps that need to be filled in this field. It is possible, for 
example, that pests may become resistant to plant-protection products if the usage 
of such products becomes more frequent in response to increased pest prevalence 
due to climate change. However, research is needed to explore this. Furthermore, the 
direct effect of climate change on the effectiveness of the management strategies 
adopted, particularly on chemical or biological control measures, has not been stud-
ied enough up to now (Gilardi et al., 2017, Gullino et al., 2020) and should be much 
more extensively investigated (Table 6). Results from a few experiments are already 
available, for instance suggesting that global warming may increase the risk of her-
bicide-resistant weeds because of enhanced temperature-dependent detoxification 
of the herbicide by the weed (Matzrafi et al., 2016). Research is also needed on be-
low-ground pests, as most research related to potential climate-change effects on 
pests has disproportionately focused on above- rather than below-ground pests, de-
spite the importance of the latter pests on below-ground processes and their influ-
ence on soil health (Chakraborty, Pangga and Roper, 2012; Pritchard, 2011). 
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Table 5. 	Examples of recent review articles focusing on climate change and future pest risk for plant ecosystems in 
agriculture, horticulture, forestry, and unmanaged natural habitats 

PEST GROUP REFERENCES (CHRONOLOGICAL ORDER WITHIN EACH GROUP)

Insects
Choudhary, Kumari and Fand, 2019; Jactel, Koricheva and Castagneyrol, 2019; Kellermann and van 
Heerwaarden, 2019; Moriyama and Numata, 2019; Yadav, Stow and Dudaniec, 2019; Borkataki et al., 2020; 
Debelo, 2020; Frank, 2020; Lehmann et al., 2020; Marshall, Gotthard and Williams, 2020.

Pathogens

Paraschivu et al., 2019; Paterson and Lima, 2019; Sharma, Hooda and Goswami, 2019; Singh, Shukla and 
Singh, 2019; Castillo et al., 2020; Garrett et al. (2020a); Hunjan and Lore, 2020; Juroszek et al. 2020; Kumar and 
Khurana, 2020; Mehmood et al., 2020; Misra et al., 2020; Perrone et al., 2020; Priyanka et al., 2020; Roth et al., 
2020; Trebicki, 2020. 

Weeds Billore, 2019; Manisankar and Ramesh, 2019; Ziska, Blumenthal and Franks, 2019; Karaca and Dursun, 2020; 
Ruttledge and Chauhan, 2020; Sun et al., 2020.

Combinations of pest groups Heeb, Jenner and Cock, 2019; Santini and Battisti, 2019; Trebicki and Finlay, 2019; Bajwa et al., 2020; Bonello 
et al., 2020; Jabran, Florentine and Chauhan, 2020; Jactel et al., 2020.

Notes: The examples listed were subjectively selected, were all published from 2019 to September 2020 in journals and books, and include mini-reviews. 
Review articles on the same topic, published from 1988 until 2011, are compiled in Juroszek and von Tiedemann (2013a). 

Table 6. 	Examples of gaps in climate-change research related to plant pests  

RESEARCH GAP (RESEARCH PROPOSAL) SELECTED REFERENCE

Potential opportunities related to crop protection less explored Sutherst et al., 2007.

Below-ground species less investigated than above-ground species Pritchard, 2011.

Tropical species less studied than species in subtropical and temperate regions Ghini, Bettiol and Hamada, 2011.

Pests in unmanaged systems less investigated than in managed systems Anderson et al., 2004.

Research is confined to a few particularly important pest species; many others are less well studied or not 
studied at all (e.g. bacteria and viruses much less investigated than above-ground pathogenic fungi)

Frank, 2020; Jones, 2016.

Many more multi-factorial field experiments that consider interactions of temperature, water and CO2 
needed (simulation of future real-world conditions, e.g. using free air CO2 enrichment approaches)

Tenllado and Canto, 2020; Vila et al., 
2021.

Biotic interactions across trophic levels poorly known, including adaptive potential of species Van der Putten, Macel and Visser, 2010.

Comprehensive summary of past results in agriculture and horticulture needed Juroszek et al., 2020.

Evaluation of current plant-protection methods under climate change scenarios needed
Delcour, Spanoghe and Uyttendaele, 
2015.

Long-term data sets needed to discriminate potential climate-change effects on pests and disease from 
confounding factors such as changes in management 

Garrett et al., 2016, 2021.

Simulations of future pest risk should more often be linked to crop models to inform potential yield losses; 
also, potential adaptation and mitigation measures should be included in the model runs where possible

Juroszek and von Tiedemann, 2015.

Much more adaptation and mitigation research needed to minimize increasing risks Hoffmann et al., 2019.

Frameworks needed for adapting decision-support systems to new frequency distributions of weather 
conditions, and even completely new scenarios

Garrett et al., 2020a.

Notes: The references listed were subjectively selected; however, post-2010 publications were preferred in order to demonstrate that research gaps are 
still prevalent. In general, each example applies equally well to insect pests, pathogens, and weeds. Modified after Juroszek and von Tiedemann (2013a) 
and Juroszek et al. (2020).
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Studies on the effects of climate change on natural enemies

The impact of climate change on natural enemies and antagonists and the subse-
quent effect of this on pest control are not yet well understood (Eigenbrode, Davis 
and Crowder, 2015). In the case of grape pest insects, it has been suggested that 
future pest management should be based on a sound set of field data collected for 
both pests and antagonists under climate-change conditions (Reineke and Thiéry, 
2016). A better understanding of the impact of climate change on ecological pro-
cesses, including at community level, will allow general principles to be incorporat-
ed into management practices (Macfayden, McDonald and Hill, 2018). 

Forestry and unmanaged ecosystems

Pests have been investigated much more in agriculture compared to forestry set-
tings (Ormsby and Brenton-Rule, 2017), and research related to unmanaged eco-
systems is rare (Harvell et al., 2002). This highlights the need for multidisciplinary 
collaboration, coordination and knowledge exchange in climate-change biology 
research to bring together scientists working on different biota within the same eco-
system, for instance plant pathologists and entomologists (Jactel et al., 2020), and 
those working on different ecosystems and sectors, such as agriculture, forestry and 
unmanaged ecosystems (e.g. the “Circular Health” or “One Health’’ approaches).

International cooperation

International cooperation is critical to the success of countries in adapting pest-man-
agement strategies to climate change. This is because effective management by one 
farmer or one country affects the success of others, as pests do not respect borders. 
International cooperation may be global or regional. A proposed new global sur-
veillance system for crop disease, for example, will integrate across diagnostic net-
works, data management networks, risk assessment networks, and communication 
networks (Carvajal-Yepes et  al., 2019). 

Establishment of a mechanism for global phytosanitary research coordination, as 
suggested in the IPPC Strategic Framework 2020–2030 (FAO, 2021b), could increase 
scientific collaboration, enhance coordination of effort, optimize the use of resourc-
es and facilitate alignment of goals. By so doing it could not only help to advance 
the science, but also strengthen the scientific foundations of international efforts to 
assess and manage the impact of climate change on plant health, thereby helping to 
protect agriculture, the environment and trade activities from pests.  

At a regional level, scenario analysis of potential responses to climate change can 
help to inform strategies for adaptation of regional disease management (Garrett 
et al., 2018). However, although many national and regional plant protection organi-
zations work to monitor and contain outbreaks of crop pests, many countries do not 
efficiently exchange information, thereby delaying coordinated responses to pre-
vent disease establishment and spread. Support for capacity building in these coun-
tries should therefore form an essential component of international cooperation. 
With the support of international organizations, global forums for information shar-
ing could be extremely useful. The experience currently gained in the organization of 
on-line meetings throughout the COVID-19 pandemic will help in fostering long-dis-
tance contacts and interactions, with a significant saving of time and money.
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While COVID-19 has disrupted most aspects of life, including food systems and ed-
ucational systems, it has also shown the potential for new shared programmes for 
capacity building as teaching has moved online. Addressing inequalities in Internet 
access will help to support these new online capacity-building opportunities.

There are various ways in which countries may build their capacity to cope with and 
adapt to climate change. The following examples serve to highlight some of the pos-
sibilities.

The Consultative Group on International Agricultural Research (CGIAR) – a global 
research partnership on food security – is forming a new “One CGIAR” beginning in 
2022, with the aim of deploying scientific innovations for food, land and water sys-
tems quicker, at a larger scale and at reduced cost. It may be advisable to maintain 
pest management as a key component of the new One CGIAR strategy to strengthen 
adaptive capacity globally and especially in national programmes that are still build-
ing their capacity to address these problems. These can include “no-regrets” adapta-
tion approaches, such as generally strengthening systems and their ability to respond 
to new challenges from climate change (Heltberg, Siegel and Jorgensen, 2009). The 
idea behind these types of approaches is that many system improvements will be 
valuable whether or not specific current climate-change scenarios play out. Because 
new pest introductions are often at least as impactful as climate-change effects, it is 
straightforward to design no-regrets improvements to pest-management systems. 
There may be limits to no-regrets options (Dilling et al., 2015), but there is much room 
to improve pest- and disease-management systems on farms and in regional man-
agement. An IPPC phytosanitary capacity evaluation can be used to evaluate a coun-
try’s readiness to respond to plant-disease challenges (Day, Quinlan and Ogutu, 2006; 
IPPC Secretariat, 2012). This is another example of a potential no-regrets approach, 
since enhancing capacity will have benefits whether or not climate-change scenarios 
play out as expected, and will probably also result in cost–benefit improvements.

Building capacity to adapt to change also means finding ways of managing financial 
risk. This can sometimes be achieved, at least in part, through crop insurance, which 
is an attractive option for protecting farmers’ livelihoods under climate-change 
stresses. However, it does not necessarily protect productivity and may provide an 
incentive for production of particular crops to continue in regions where the crops 
are no longer suited to the new environment (Falco et al., 2014).

Elements of effective altruism (“providing benefits for society”) – whereby some 
share of effort would be invested in evaluating worst-case scenarios for pest effects 
and how they may be addressed – may also prove useful in helping countries adapt 
to climate change (Garrett et al., 2020b).
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Conclusions and recom
m

endations

To conclude, the evidence reviewed in this report strongly indicates that in 
many cases climate change will result in increasing problems related to 
plant health in managed (e.g. agriculture, horticulture, forestry), semi-man-

aged (e.g.  national parks) and presumably also unmanaged ecosystems. Adjust-
ments in plant-protection strategies are already necessary today because of recent 
climate changes and adjustments will be even more crucial in the future, assum-
ing the projected climate-change scenarios come true. Climate-smart pest man-
agement, which involves the implementation across farms and landscapes of ho-
listic approaches, is mostly based on selected existing management methods, in 
order to be able to enhance mitigation and strengthen resilience. Maintaining man-
aged and unmanaged ecosystem services and produce, including food, under cli-
mate-change conditions is of paramount importance, and preventive and curative 
plant-protection measures are key components to the maintenance of current and 
future food security.
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